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Abstract. A probabilistic approach for investigating the phenomena of dissonance and consonance
in a simple auditory sensory model, composed by two sensory neurons and one interneuron, is
presented. We calculated the interneuron’s firing statistics, that is the interspike interval statistics
of the spike train at the output of the interneuron, for consonant and dissonant inputs in the
presence of additional "noise", representing random signals from other, nearby neurons and from
the environment. We find that blurry interspike interval distributions (ISIDs) characterize dissonant
accords, while quite regular ISIDs characterize consonant accords. The informational entropy of the
non-Markov spike train at the output of the interneuron and its dependence on the frequency ratio
of input sinusoidal signals is estimated. We introduce the regularity of spike train and suggested
the high or low regularity level of the auditory system’s spike trains as an indicator of feeling of
harmony during sound perception or disharmony, respectively.
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INTRODUCTION

The perception and processing of environmental complex signals resulting from the
combination of two or more input periodical signals are still an open problem for
physicists and physiologists. In particular, the precise neural and physiological bases
for our perception of musical consonance and dissonance are still largely unknown [1] —
[3]. Although there is no single musical definition, consonance is usually referred to
as the pleasant stable sound sensation produced by certain combinations of two tones
played simultaneously. Conversely, dissonance is the unpleasant unstable sound heard
with other sound combinations [4]. The dominant and the oldest theory of consonance
and dissonance is that of Pythagoras (570 — 495 BC). He observed that the simpler
the frequency ratio between two tones !, the more consonant they will be perceived.
Example: the consonant octave is characterized by a 1/2 frequency ratio between two
tones, while the dissonant semitone is characterized by a 15/16 ratio. In 1843 Georg
Ohm first proposed that the ear works as a Fourier analyzer [5]. In the same period,

! Pure tone is a single frequency tone with no harmonic components, or overtones. Complex tone is a
combination of the fundamental frequency tone together with its harmonic components. Sounds produced
from musical instruments are complex tones.



August Seebeck noticed the "missing fundamental" pitch perception [6]: a stimulus with
a severely attenuated lowest component is subjectively assigned the same pitch as one
with the lowest component at full strength 2. In this work, after shortly reviewing the first
physical theory on consonance and dissonance of von Helmholtz, two recent theoretical
approaches (ghost stocastic resonance and nonlinear synchronization of oscillators), and
the pitch shift effect related to the fundamental experiment on virtual pitch perception,
we review our theoretical probabilistic approach to the statistics of consonance and
dissonance musical accords by a simple auditory sensory model.

Helmbholtz’s theory and pitch perception

In 1877, Helmholtz analyzed the phenomenon of consonance and dissonance in the
more general context of complex tones and proposed the "beat theory" [7]. When two
complex tones are played together as an interval *, the harmonics of each tone are present
in the stimulus arriving at the ear of the listener. For some combinations (simple ratio
n/m) the harmonic frequencies match, for others (complicated ratio n/m) they do not.
As the frequency ratio n/m becomes more "complicated", the two tones share fewer
common harmonics and there is an increase in harmonics pair slightly mismatched in
frequency which give unpleasant beating sensation. In other words, the dissonance is
proportional to the number of frequency components present in the two complex tones
that produce beats. In Table 1 is shown the ordering of consonances for two tone intervals
as accepted in the Western musical culture in decreasing order of "perfection" from most
consonant to most dissonant [7]. The third column lists the frequency ratios of the two
tones, and the fourth column lists AQ, the width of the stability interval.

TABLE 1. Ordering of consonances for two-tone intervals from most dissonant
(down) to most consonant (up)

interval name interval ratio AQ Consonance
absolute consonances  unison 1:1 0.075 T
octave 1:2 0.023 T
perfect consonances fifth 2:3 0.022 T
fourth 3:4 0.012 T
medial consonances major sixth 3:5 0.010 T
major third 4:5 0.010 T
imperfect consonances minor third 5:6 0.010 T
minor sixth 5:8 0.007 T
dissonances major second 8:9 0.006 T
major seventh  8:15 0.005 T
minor seventh  9:16 0.003 T
minor second 15:16 - T
Dissonance

2 Pitch is the perceived fundamental frequency of a tone. Pitch salience is the strenght of tone sensation.
3 Interval in music theory is the difference in pitch between the fundamental frequencies of two tones.



In the following Fig. 1, three different intervals are shown, namely whole—tone,
perfect 5th, unison (from bottom to top). We can see that the unison matches exactly, and
this interval is considered to be the most consonant. Next, the perfect 5¢th shows some
matched and some mismatched frequencies. The whole tone shows a mismatch for all
frequencies. These frequencies can be close enough together so that discernible beats
can result. As a result, the whole—tone interval is more dissonant than the perfect 5th,
which in turn is more dissonant than the octave that is more dissonant than the unison.
As one proceeds down the Fig. 1, the number of mismatched harmonics increases and
so does the dissonances. In beat theory of Helmholtz therefore, mismatched harmonics
are considered the cause of the dissonance. Intervals were consonant if there were no
or few beats between the partials. For dissonant intervals, the partials of different tones
were so close together in frequency that the beating between them was perceived as
dissonance [7].
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FIGURE 1. Three different intervals, namely whole—tone, perfect 5¢4, unison (from bottom to top).

Pitch is a very fundamental concept in music. In fact, music is essentially a variation in
loudnesses, pitches, and timbres as a function of time [8]. The official definition of pitch
is "that attribute of auditory sensation in terms of which sounds may be ordered on a
scale extending from high to low" [9]. Pitch is a subjective place of a perceived complex
sound on the frequency scale: pitch represents the perceived frequency of a sound. Pitch
may be quantified as a frequency, but pitch is not a purely objective physical property,
it is a subjective psychoacoustic attribute of sound. A high pitch (> 2kHz) will be
perceived to be getting higher if its loudness is increased. A low pitch (< 2kHz) will be
perceived to be going lower with increasing loudness. This is called Stevens’s rule [10],
the pitch of a pure sinusoidal tone depends not only on its frequency but also on its
intensity. Complex tones evoke pitch sensations which are often determined exclusively
by overtones. However, how the brain estimates the pitch of complex sounds, formed by
a combination of pure tones, remains a controversial issue [11] —[14]. Another important
quantity in music is the pitch salience, which represents the evidence of the periodicity
of some spike train, being the pitch value the periodicity itself. In other words, pitch
salience is the probability of noticing a tone, the clarity or strength of tone sensation.
The estimated salience, or relative strength, of the strongest pitch of complex tones, that
is the maximum salience, is an estimation of the perceived consonance.

A complex tone composed of two sine waves of 900 and 1200 Hz gives rise to three
pitches: two spectral pitches at 900 and 1200 Hz, due to the physical frequencies of the
pure tones, and the combination tone at 300 Hz, corresponding to the repetition rate of



the waveform. This is the so called missing fundamental frequency, which is the greatest
common divisor of the frequencies present in the input sound.

Perception of concurrent combinations of tones is central to physiological theories of
musical harmony and melody. In fact, perception of consonance in music involves sen-
sory and perceptual processes that are relatively independent of context, as well as cog-
nitive processes depend on musical context [15]. When a harmonic interval is played,
neurons throughout the auditory system that are sensitive to one or more frequencies
(partials) contained in the interval respond by firing action potentials. For consonant in-
tervals, the fine timing of auditory nerve fiber responses contains strong representations
of harmonically related pitches implied by the interval and all or most of the partials
can be resolved by finely tuned neurons throughout the auditory system. By contrast,
dissonant intervals evoke auditory nerve fiber activity that does not contain strong rep-
resentations of constituent notes or related bass notes. Moreover, many partials are too
close together to be resolved. Consequently, they interfere with one another, cause coarse
fluctuations in the firing of peripheral and central auditory neurons, and give rise to per-
ception of roughness and dissonance [11].

It is important to distinguish between musical consonance/dissonance: a given
sound evaluated within a musical context, and psychoacoustic, or sensory conso-
nance/dissonance: a given sound evaluated in isolation. Musical consonance/dissonance
is culturally determined: variation across cultures and historical periods. Judgments
of sensory consonance/dissonance are culturally invariant and largely independent of
musical training, involving basic auditory processing mechanisms. Moreover, rodents,
birds, monkeys, and human infants discriminate isolated musical chords on the basis of
sensory consonance and dissonance similarly to expert human listeners and experienced
musicians [1]. We will consider in this work the just intonation * musical accords, that
is the sensory consonance/dissonance.

Ghost Stochastic Resonance

For harmonic complex sound signals, whose constituent frequencies are multiple in-
tegers of a fundamental frequency, the perceived pitch is the fundamental, even if that
frequency is not spectrally present in the input signal. This is known as missing funda-
mental illusion. Recently, a mechanism for the perception of pitch has been proposed on
the basis of the so called ghost stochastic resonance (GSR) [16] — [20]. According to
the proposed mechanism, a neuron responds optimally to the missing fundamental of a
harmonic complex signal for an appropriate level of noise. The main ingredients are: (i)
a linear interference between the individual tones, producing peaks of constructive inter-
ference at the fundamental frequency (ghost frequency), whose amplitude is not suitable
to trigger the neuron; (ii) a nonlinear threshold that detects those peaks with the help of
a suitable amount of noise.

In the following Fig. 2 it is shown a complex sound s.(¢) obtained by adding two

4 The just intonation tuning is the basic scaling method in which the frequencies of notes are related by
ratios of integers.



sinusoidal signals s;(¢) and s, (¢). The constructive interference between s; () and s,(7)
gives rise to the peaks (asterisks in the figure) in s.(¢) at the period of the missing
fundamental @y. These peaks together with a noise signal can be detected by a nonlinear
threshold (see Fig. 2B). In fact, the complex tone s, is the input to a neuron which
produces a membrane potential excursion that, because of its low amplitude, cannot
fire a spike. When noise is added to s, it induces spikes with high probability at the
interference preaks. Moreover, peak detection is optimized at some noise intensity [16,
17].
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FIGURE 2. A) A complex sound s. obtained by adding two sinusoidal signals with frequencies w; =
(k+ 1)ay and @, = kay, namely s.(¢t) = s1(¢) +52(¢) = aysin(it) + axsin(wyt). Here ay = ay = 1,k =
2,0 = 1. The peaks (asterisks) exhibited by s, result from constructive interference between s;(¢) and
s2(t). B) The peaks of s.(¢) shown in A) can be detected by a nonlinear threshold by adding a noise
signal, generating interspike intervals "t" close to, or to integer multiples of, the fundamental period. C)
The most probable interspike interval corresponds with the missing fundamental (here fo = @y /27, fi =

(1)1/2717,f2 = (1)2/271').

The GSR mechanism was extended to describe a higher level of perception process-
ing: the binaural pitch perception in Refs. [18, 19]. Two different neurons, at a different
auditory channel, receive one single component of the complex signal each, and their
output spike trains drive a third neuron that processes the information. This processing
neuron responds preferentially at the ghost frequency and the response is optimized by
synaptic noise.

Nonlinear synchronization theory of musical consonance

A nonlinear synchronization theory of consonance that goes beyond the linear beating
theory of Helmholtz was recently proposed in Ref. [2]. This theory is based on the mode
locking properties of simple dynamical models of pulse-coupled neurons. The mode
locking describes the phenomenon where the frequencies of two oscillators remain in
a given ratio for some finite range of parameters. When the oscillators, that is the
periodically firing neurons, adjust their frequency to maintain the same ratio, this is a
signature of nonlinear synchronization. For example we have one—to—one (1 : 1) mode
locking if one neuron fires at a frequency which is synchronized with that of the second
neuron. If the first neuron fires only once for every two firing of the second neuron, we
have a 1 : 2 mode locking and so on, in general we have n : m mode locking (with n and
m integers). By using a simple scheme of two mutually coupled neural oscillators, the



authors show that the mode-locked states ordering gives precisely the standard ordering
of consonance [3].

The authors of Ref. [2] analyze the dynamics of two coupled leaky integrate-and-fire
neuron models, with mutual excitatory coupling, by finding that the mode locking ratios
n/m are ordered according to the “Farey sequence", which orders all rational fractions
n/m in the interval [0,1] according to their increasing denominators m [21]. By plotting
the ratio of actual firing frequencies as a function of the ratio of natural intrinsic fre-
quencies of the two coupled oscillators, they reproduce the so-called “Devil’s Staircase",
with flat steps corresponding to different mode-locked states. This is a universal feature
of driven coupled oscillators [22]. The width of each step, that is of the mode-locked
interval, is an indicator of the structural stability of the synchronization. It is therefore
possible to order the mode-locked states by their stability index, by finding a correspon-
dence with the theoretical ordering of musical intervals according to their consonance
evaluation. The steps decrease in width as higher integers occur in their fractional rep-
resentation of the mode locking (see Fig. 3). Heffernan and Longtin in Ref. [3] analyzed
in detail the same model of Ref. [2] by considering different values of coupling between
the oscillators. They found that the ordering of mode locked states is not universal, but
depends on the coupling strength. Moreover, the noise jitters the spike times and mode
locked patterns, but the overall shape of the firing mode lockings is preserved.
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FIGURE 3. The ratio of the observed oscillator frequencies when coupled as a function of the ratio of
the oscillator’s natural intrinsic frequencies.

Pitch shift effect

Almost all musical sounds are complex tones that consist of a lowest frequency com-
ponent, or fundamental, together with higher frequency overtones. The fundamental plus
the overtones are together called partials. The first perceptual theories considered pitch
to arise at a peripheral level in the auditory system [5, 6, 7, 23, 24], while experiments
have shown that pitch processing of complex tones is carried out before the primary
auditory cortex [25]. The ability of the auditory system to perceive the fundamental
frequency of a sound even when this frequency is removed from the stimulus is an in-
teresting phenomenon related to the pitch of complex sounds. This capability is known
as "residue perception", "virtual pitch" or missing fundamental, and consists of the per-
ception of a pitch that cannot be mapped to any frequency component of the stimulus



(see Fig. 4). According to the Helmholtz theory, the missing fundamental can be ob-
tained by the difference combination tone between two sources with two frequencies.
However, Schouten et al. [23] found in their crucial experiment that the behavior of
the residue cannot be described by a difference combination tone. By shifting all the
partials by the same amount Af (see Fig. 4c), the complex is no longer harmonic, the
difference combination tone remains unchanged, and the same should thus be true of the
residue. Instead, it is found that the perceived pitch also shifts, showing a linear depen-
dence on Af (Fig. 4d). This phenomenon is known as the first pitch-shift effect, and has
been accurately measured in many psychoacoustic experiments [26]. The fundamental
experiment of Ref. [23] was accurately described in terms of generic attractors of non-
linear dynamical systems, by modeling the auditory system as a generic nonlinear forced
oscillator [27].
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FIGURE 4. (a) A harmonic complex tone. The overtones are successive integer multiples k = 2,3.4 ..
of the fundamental f that determines the pitch. (b) Another harmonic complex tone with the fundamental
and the first few higher harmonics removed. The pitch remains the same and equal to the missing
fundamental. This pitch is known as virtual or residue pitch. (c) An anharmonic complex tone, where the
partials, which are no longer harmonics, are obtained by a uniform shift Af of the previous harmonic case
(shown as dashed line). Although the difference combination tones between successive partials remain
unchanged and equal to the missing fundamental, the pitch shifts by a quantity AP that depends linearly
on Af. (d) Pitch as a function of the central frequency f. = (k+ 1) fo + Af of a three component complex
tone, namely kfy +Af, (k+1)fo +Af and (k+2)fo + Af. This is the pitch shift effect, shown here for
k=16,7, and 8 (see Ref. [27]).

PROBABILISTIC APPROACH

The key element of the cochlea in the inner ear of mammals is the basilar membrane,
which performs the sound Fourier transform with a good precision [28, 29]. As a result,
different spectral components of the input signal, i.e., different oscillating parts of the



basilar membrane, act upon different sensory neurons (sensors) , which send their output
of spike trains to the interneurons. Because we restrict our analysis by two spectral
harmonics (simple chords of tone pairs), it is sufficient to consider the model with two
sensors at the input (see Fig. 5). The sensors Ny, N, are subjected to the mixture of
subthreshold sinusoidal signals with different frequencies and statistically independent
additional white Gaussian noises. The sum of weighted sensors’ spike trains summed
with the third statistically independent white Gaussian noise is sent to the interneuron
N3, which is an internal neuron connecting sensory neurons to other neurons within the
same region of the brain. The output spike train of the interneuron is the main object of
investigation [30, 31].

FIGURE 5. The investigated model. N; and N, are the sensory neurons, driven by subtreshold sinu-
soidal signals with different frequencies. Spike trains of sensors are received by the interneuron Ns. & (¢),
(), and &;(¢) are the statistically independent white Gaussian noises.

Each neuron is modeled by the simple nonlinear model referred to as the noisy leaky
integrate-and-fire neuron [32]. We analyze the probability distribution of interspike
intervals (ISIDs) of the output signal of the interneuron by assuming to know the ISIDs
of the output signals of the two sensory neurons p; () and p;(¢). We reduce the number
of events for which the interneuron can fire to four main scenarios because all other
events have a very negligible probability to happen in comparison with the previous
four. In this way we are able to calculate the first passage time distribution at the
output of the interneuron p3(¢), using conditional probabilities and first passage time
distributions at the output of sensory neurons. Moreover, for periodical input signal at
the sensors with frequency ratio m/n we obtain (m+n-1) different patterns of input spike
trains for the interneuron, with different ISIDs at its output. The final interspike interval
density of the interneuron p,,;(T') is obtained by averaging the first passage time density
p3(r) over all different states (m+n-1) of the interneuron. We show how a complex
input composed of two harmonic signals is transformed by the proposed simple sensory
system into different types of spike trains, depending on the ratio of input frequencies.
Looking for the differences in the statistical sense, we find out that the output ISIDs
for some combinations of frequencies, corresponding to consonant accords, have more
regular pattern, while inharmonious signals, corresponding to dissonant accords, show
less regular spike trains and blurry ISIDs. This difference indicates that consonant
accords are higher stable, with respect to the noise environment, in comparison with
the dissonant accords in the processing of information throughout the auditory system.



Model

As a neuron model for our sensory system (see Fig. 5) we consider the Leaky
Integrate-and-Fire (LIF) model. Therefore, the set of stochastic differential equations
describing our system is

v = —Uvy + A COS(Qll‘) + v Dlél (t)a
Vo = —LUpvy +Apcos(Qat) + /D2&s (1), (D
V3 = —U3vs +kis1(t) +kasa (1) +/D3&3(1),

where v;(¢) and y; stand for the membrane potential and the relaxation parameter, re-
spectively, and the subscript i labels the different neurons, with i = 1,2 representing the
two input sensory neurons (N; and N,) and i = 3 (N3) denoting the processing interneu-
ron. A; and €; (with i = 1,2) are the amplitude and the frequency of the corresponding
harmonic input of the sensors. We consider that the three neurons have different synap-
tic connections, they are not subject to the same background noise and the three noise
sources &;(¢) are independent of each other. Therefore, in Egs. (1), the three white Gaus-
sian noise terms &;(¢) (i = 1,2, 3) are uncorrelated and with the usual statistical properties
(&i(t)) =0 and (&(r)E;(r")) = 8(r —1')&;j. D; is the noise intensity in each neuron. In

Ni(t)
Eq. (1) si(t) = ¥ 6(t —1t;),i = 1,2 are the spike trains generated by the sensors and
j=0

received by the interneuron as input, k; (i = 1,2) are the coupling coefficients. Spikes
are modelled by Dirac §-functions. The LIF model doesn’t comprise any mechanism
of spike generation. When the membrane potential v; reaches the threshold value vy,
the neuron is said to fire a spike, and v; is reset to its initial value v?. In particular, the
input spikes at the interneuron, coming from the sensory neurons, can produce spikes or
jumps in the membrane potential of the interneuron, depending on whether or not they
are suitable to fire the interneuron.

All simulation and theoretical results presented in this work are obtained using the
following set of values of system parameters, namely t; = up, = 1, uz = 0.3665, D; =
Dy =D3=1.6-10"3 k1 =k, =0.98, =) =0,V = —1, and v, = 1, unless stated
otherwise. The refractory period T,, ¢ of the output interneuron is introduced explicitly as
the time at which the membrane potential reaches the level v3 = —0.1, that is T, = 6.28.
The first two equations of system (1) describe the Ornstein-Uhlenbeck processes with
harmonic driving forces. For the Ornstein-Uhlenbeck neuronal model, the ISID was
obtained analytically with different approaches in Refs. [33, 34]. This distribution, which
coincides with the first passage time probability distribution related to the firing event of
sensory neurons, is our starting point to obtain the ISID at the output of the interneuron.

It is important to note here that the ISIDs at the output of two sensors are non-
Poissonian (see Fig. 6b). These spike trains are the input of the third neuron, and
as a consequence the dynamics of the membrane potential of the interneuron is non-
Markovian. The output of the interneuron is shown in Fig. 6c. In order to perform this
analysis we use three main assumptions: (i) The input harmonic signals are subthreshold
for the sensors, that is the signal A;cos(;t) is not able to bring the membrane potential
of the " sensor above the threshold in the absence of noise (D; = 0). This means absence
of spikes at the output of the sensors. (i1) Only one spike can be generated at each period



of the harmonic driving force, and, at the same time, the spiking on each period is the
most probable situation (see Fig. 6a). This means that the relaxation times of sensors are
smaller than the periods of the sinusoidal signals. (iii) Each of coupling coefficients k;
is less than the threshold value of the membrane potential v;;,. It means that any separate
incoming spike (see Fig. 6¢) evokes a subthreshold impulse of the membrane potential
of the interneuron v(¢), i.e. spike generation is impossible without noise. At the same
time, the sum of the two coupling coefficients is greater than v;,.

refractory relaxation
period

FIGURE 6. (a) Typical behavior of the membrane potential v;(¢) of sensory neurons versus time for a
noise realization. (b) ISI distribution of the sensory neurons. The highest probability of a spike after t =0
is near one period of external force (+ = 10.47). The probability of firing after two, three, etc. periods
decreases exponentially. (c) Typical behavior of the membrane potential v3(¢) of the interneuron versus
time for the same noise realization. Here are well visible the refractory state (ref), characterized by the
refractory time Ty r, and the noisy background (bg) during the relaxation time T4y

Therefore, we can evaluate the probability AP;(r) = p3(¢)Ar that the interneuron N3
fires in the short time interval (z,7 + At), by considering the occurrence of the following
events:

1. receiving a separate firing spike from the sensory neuron Ni;

2. receiving a separate firing spike from the sensory neuron N,;

3. receiving a firing spike from the neuron N; on the background of the membrane
potential relaxing, after the jump due to the spike from the N> neuron, towards the
zero value; in other words, sensor N, causes the jump and then sensor N; the spike;

4. receiving a firing spike from the neuron N, on the background of the membrane
potential relaxing, after the jump due to the spike from the N; neuron, towards the
zero value; in other words sensor N causes the jump and then sensor N, the spike.

We neglect the contribution of multiple jump events to fire the interneuron and the
noise-induced spike events occurring during the relaxation of the membrane potential
after a jump, because they have very negligible probability to happen in comparison
with the previous four, with the chosen range of system parameters. The four described
scenarios exclude each other, so they are mutually exclusive events. As a result, accord-



ing to the formula of total probability we have to add up all probabilities of the above
mentioned events.

Interspike interval distributions
Now we calculate numerically the interspike interval distributions of the interneuron

for two groups of consonant and dissonant accords by numerical simulations of Egs. (1)
(see Figs. 7 and Fig. 8).
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We note the very regular behavior of the patterns of p,,(7) in all the consonant
accords considered, and the very rich pattern with many peaks in the major 3rd (5/4)
and minor 3rd (6/5) accords.
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The ISIDs of dissonant accords are blurry with respect to the ISIDs of the consonant
accords. This means that we can consider the ISID as an investigative tool to discriminate
between consonant and dissonant accords. In fact higher are the integers m, n less regular
and blurry are ISIDs, while lower are the integers more regular are the ISIDs.

REGULARITY

Each different state of the interneuron belongs to a hidden Markov chain (HMC). For
each state of the HMC we are able to calculate the First Passage Time Probability
Density (FPTPD) for the passage of the interneuron’s threshold of spike generation by
the theoretical approach presented in the previous section (see Ref. [30] for details). For
input frequencies with ratio (Q;/Q; = m/n), all FPTPDs consist of peaks, and each
peak corresponds to switching into some existing state of the HMC. Thus, the element
of the HMC'’s transition matrix is obtained as follows: m;; = [ p)(r)dt, where p(/)(r)
(i—J)

is the FPTPD of the interneuron in the i-th state, and (i — j) is the interval, in which the
peak of p(i) (1), corresponding to switching into a state j, is situated.

Starting from the HMC’s transition matrix we calculate the specific informational
entropy H of the interneuron’s spike train using the Shannon’s formula [31]

M=1 M1
H=-Y pi ) mjlog,m;, (2)
=0 j=0

where p; is the probability of state 7, which can be obtained from the {r;;} matrix, and
M is the whole number of states of the HMC.
To characterize the regularity of the spike trains we introduce the spike regularity

measure R as
R(m/n) = Hyax — H(m/n), 3)

where Hy,,, is the maximal entropy value over all considered m/n ratios. Obviously,
R is defined up to a multiplicative constant [31]. In Fig. 9 the dependence R(m/n)
corroborates the hypothesis of the connection between the harmony perception and
highly regular spike trains in neural ensembles of the auditory system [30]. Indeed, the
regularity R (the entropy H) is high (low) for small integers m,n (namely, m,n < 10),
i.e. the investigated system produces a regular output spike train under influence of
consonant accords at the input. R grows linearly with increasing ratio m/n at fixed
difference (m —n) (Fig. 9, bold solid lines).

We note that this behavior of the regularity is very similar to the well-known first
pitch-shift effect [23] in the psychoacoustics: the linear growth of pitch for the linear
upward shift of frequencies of sounding tones at a given difference between the frequen-
cies. Therefore, because the pitch is a proxy of the regularity, the observed qualitative
correspondence between the obtained dependence R(m/n) and the dependence f),(m/n),
confirmed in experiments [23] (see also Fig. 4), proves the feasibility of the model under
investigation. In some sense, the regularity embraces both the pitch value (periodicity of
a spike train) and the pitch salience (evidence of the periodicity). Thus, the use of the



FIGURE 9. Regularity of the interneuron’s spike train depending on the frequency ratio of input
sinusoidal signals m/n = Q;/Q,. The bold solid lines approximate the locus of the R(m/n) points for
constant differences (m —n). The noise intensity is the same for all three noise sources.

regularity value R as a measure of the “consonance level” may have a number of ad-
vantages in comparison with the use of the pitch salience. Firstly, regularity is a clear
physical quantity of a concrete spike train. Secondly, an R value can be obtained di-
rectly from a spike train by calculation of specific informational entropy [31]. Thirdly,
obtaining of a regularity value does not require determination of a pitch value, which is a
problem in a case of unknown or too complex input sound, e.g., a voice of a human. We
suppose also that an experimental confirmation of the plots shown in the Fig. 9 can be
very fruitful for neurophysiological applications. For example, the discovery of brain re-
gions where property of the spike train regularity could help to understand how pleasant
or unpleasant are perceived by a mammal sounds, which are more complex than simple
musical accords.

CONCLUSIONS

With our simple model of the auditory system, we are able to discriminate between
consonant and dissonant accords by analyzing the first passage time probability distribu-
tions at the output of the interneuron. Blurry ISIDs characterize dissonant accords, while
quite regular ISIDs characterize consonant accords (Figs. 7, 8). We have calculated the
informational entropy for the non-Markov spike train at the output of the auditory system
model, and introduced the regularity of spike train. The high or low regularity level of
auditory system’s spike trains has been suggested as an indicator of feeling of harmony
during sound perception or disharmony, respectively. By considering an extension of this
simple model to a more complex realistic auditory system, composed of many sensory
neurons and different layers, we should be able to know at which extent the dissonant
accords will “survive", against the consonant ones, in the noisy neural environment of
the brain.
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