1,924 research outputs found

    Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=1/2

    Full text link
    We report on an analytical description of spin-dependent electronic transition rates which are controlled by a radiation induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=1/2). The oscillation components (the Fourier content) of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances with account of a possible correlation between the two distributions that correspond to the two individual pair partners. The results presented here show that when electrically or optically detected Rabi spectroscopy is conducted under an increasing driving field B_ 1, the Rabi spectrum evolves from a single resonance peak at s=\Omega_R, where \Omega_R=\gamma B_1 is the Rabi frequency (\gamma is the gyromagnetic ratio), to three peaks at s= \Omega_R, s=2\Omega_R, and at low s<< \Omega_R. The crossover between the two regimes takes place when \Omega_R exceeds the expectation value \delta_0 of the difference of the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance lines in the presence of disorder caused by hyperfine field or distributions of Lande g-factors. We capture this crossover by analytically calculating the shapes of all three peaks at arbitrary relation between \Omega_R and \delta_0. When the peaks are well-developed their widths are \Delta s ~ \delta_0^2/\Omega_R.Comment: 10 page, 5 figure

    Electrical Detection and Magnetic-Field Control of Spin States in Phosphorus-Doped Silicon

    Full text link
    Electron paramagnetic resonance of ensembles of phosphorus donors in silicon has been detected electrically with externally applied magnetic fields lower than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine term rather than by the Zeeman terms at such low magnetic fields, superposition states α>+β> \alpha{}| \uparrow \downarrow >+\beta{}| \downarrow \uparrow > and β>+α>-\beta{}| \uparrow \downarrow > + \alpha{}| \downarrow \uparrow > were formed between phosphorus electron and nuclear spins, and electron paramagnetic resonance transitions between these superposition states and >| \uparrow \uparrow > or >| \downarrow \downarrow > states are observed clearly. A continuous change of α\alpha{} and β\beta{} with the magnetic field was observed with a behavior fully consistent with theory of phosphorus donors in silicon.Comment: 6 pages, 5 figure

    Transport and recombination through weakly coupled localized spin pairs in semiconductors during coherent spin excitation

    Get PDF
    Semi-analytical predictions for the transients of spin-dependent transport and recombination rates through localized states in semiconductors during coherent electron spin excitation are made for the case of weakly spin-coupled charge carrier ensembles. The results show that the on-resonant Rabi frequency of electrically or optically detected spin-oscillation doubles abruptly as the strength of the resonant microwave field gamma B_1 exceeds the Larmor frequency separation within the pair of charge carrier states between which the transport or recombination transition takes place. For the case of a Larmor frequency separation of the order of gamma B_1 and arbitrary excitation frequencies, the charge carrier pairs exhibit four different nutation frequencies. From the calculations, a simple set of equations for the prediction of these frequencies is derived

    Consecutive bilateral decompression retinopathy after mitomycin C trabeculectomy: a case report

    Get PDF
    BACKGROUND: After a successful trabeculectomy, a sudden intraocular pressure decrease may alter the intracranial to intraocular pressure ratio and cause decompression retinopathy. Frequent Valsalva maneuvers may also play a role in its pathogenesis. This condition may manifest as multiple retinal hemorrhages, edema of the optic disc, macular edema, or a sudden decrease in visual acuity postoperatively. Outcomes for patients are usually good, with spontaneous resolution occurring within a matter of weeks. It has been rarely reported in the literature as a bilateral condition. CASE PRESENTATION: We present a case of consecutive bilateral decompression retinopathy in a 54-year-old severely obese Caucasian woman (body mass index 37 kg/m(2)) with open angle glaucoma and a poor history of medical therapeutic compliance, who chose surgical treatment based on her inability to consistently use ocular drops. Our patient underwent a trabeculectomy with mitomycin C in both eyes, with surgeries taking place 3 months apart. After the first surgery, 2 weeks postoperatively, she complained of decreased visual acuity. Examination of her right eye fundus revealed multiple retinal hemorrhages and disc edema. There was a similar pattern in her left eye, this time including maculopathy. Her visual acuity and fundoscopic changes resolved spontaneously over a period of a month in both cases. Currently, our patient has well-controlled bilateral intraocular pressure, ranging between 14 and 16 mmHg, without hypotensive medication. CONCLUSIONS: Decompression retinopathy is a potential complication after glaucoma surgery, but has rarely been described as a bilateral consecutive condition. A comprehensive approach could help to anticipate its occurrence and manage it.info:eu-repo/semantics/publishedVersio

    Optical air data systems and methods

    Get PDF
    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented

    X-ray diffraction studies of the effects of N incorporation in amorphous CNx, materials

    Get PDF
    The effects of nitrogen incorporation on the atomic-scale structure of amorphous CNx samples have been studied for 0, 5, 20, and 30 at. % N concentration, by x-ray diffraction. Significant differences in the structure are observed on the incorporation of only 5 at. % N, and the changes in structure continue as further N is added. From the experimental data, we are able to obtain directly the average bond distances and then calculate the average bond angles for each of the samples. The average first neighbor distance shows a gradual decrease from 1.55 Angstrom for 0 at. % N, to 1.44 Angstrom for 30 at. % N, and a similar trend is observed in the position of the second neighbor peak. This gives a corresponding increase in the average bond angle from 108 degrees to 114 degrees. The results show an increase in the fraction of sp(2) bonded carbon atoms with increasing N concentration, and there is evidence for the presence of significant numbers of C=N and C=N bonds. These results are also consistent with stress, hardness, and optical gap measurements for these samples. (C) 1998 American Institute of Physics. [S0021-8979(98)03907-3]
    corecore