6 research outputs found

    Pure species within a continuum of genetic and morphological variation:Sympatric oaks at the edge of their range

    Get PDF
    Background and Aims Studies on oaks (Quercus spp.) have often been hampered by taxonomic confusion, a situation further compounded by the occurrence of extensive interspecific hybridization. In the present study, a combination of genetic and morphological analyses was used to examine sympatric populations of Q. petraea and Q. robur at the north-western edge of their ranges in Northern Ireland, since it had previously been suggested that hybridization could facilitate the apparent rapid, long-distance dispersal of oaks following the glaciations. Methods Samples were collected from 24 sites across Northern Ireland that had been previously designated as ancient or semi-natural woodland. Genotypes were obtained from a total of 950 trees using 12 nuclear microsatellite loci, and admixture coefficients were calculated based on a Bayesian clustering approach. Individuals were also classified as Q. petraea, Q. robur or hybrids based on two objective morphometric characters shown previously to delineate pure individuals effectively. Genetically ‘pure’ individuals of both species, as defined by the Bayesian clustering, were also genotyped for five chloroplast microsatellites. Key Results Genetic and morphological analyses both indicated the presence of pure individuals of both species, as well as a continuum of intermediates. There was a good agreement between the molecular and morphological classification, with a generally clear separation between pure individuals. Conclusions Despite millennia of hybridization and introgression, genetically and morphologically pure individuals of both Q. petraea and Q. robur can be found at the edge of their range, where both species occur sympatrically. The high proportion of individuals exhibiting introgression compared with previous studies may reflect the historical role of hybridization in facilitating dispersal following the glaciations. This is further supported by the significantly higher chloroplast diversity in Q. robur compared with Q. petraea

    Trees in trimmed hedgerows but not tree health increase diversity of oribatid mite communities in intensively managed agricultural land

    No full text
    Hedgerows structure agricultural landscape worldwide but little is known on their soil communities. In the intensively managed agricultural landscapes of Ireland and the UK, hedgerows protect soil from degradation and are thought to provide a reservoir of soil biodiversity for the farmed fields. But hedgerows are currently threatened by emergent tree diseases spread with rising volumes of trade in plants. This study analysed the effect of the most dominant hedgerow tree species on the composition and diversity of soil communities, which we estimated with oribatid mites in the context of an imminent ash dieback outbreak in Northern Ireland. We hypothesised that the environmental heterogeneity created by different tree species and good tree health are beneficial to the abundance and diversity of these soil communities. We found that communities differ, both in terms of species composition and relative abundances, between different trees in the trimmed hedgerows, and between untrimmed and trimmed hedgerows. The presence of trees was associated with more variable species composition. The analysis of phospholipid fatty acids (PLFA) showed that pasture and adjacent hedgerows were dominated by bacteria but there was no clear relationship between bacterial biomass and oribatid abundance or richness. However, changes in bacterial PLFAs were correlated positively with changes in oribatid community composition. Soil under ash trees which were diseased supported a higher species richness and greater abundance of oribatids than healthy trees. We conclude that the presence of different tree species in hedgerows adds to the overall diversity of soil hedgerow communities and hypothesise that the structural heterogeneity created by tree canopy drives increased diversity. Ill health in ash trees is currently positively affecting oribatid communities, possibly due to the temporarily increase in organic matter in soil. The epidemic of ash dieback, however, is expected to kill and remove trees in the medium term and so reduce soil community diversity in the long term

    Introduction of <i>Hymenoscyphus fraxineus</i> to Northern Ireland and the subsequent development of ash dieback

    Get PDF
    Publication history: Accepted - 12 December 2022; Published online - 11 January 2023.Ash dieback caused by Hymenoscyphus fraxineus was first recorded in Northern Ireland (NI) in November 2012. The disease was observed only on recently (<6 years) planted trees. An in-depth case study in 2015 of an ash plantation with severe symptoms indicated that many of the trees were infected at the time of planting. Apothecia were observed developing from pseudosclerotia beneath the epidermis of dead branches still attached to the tree, suggesting a possible mechanism whereby H. fraxineus could be disseminated without leaf or rachises infection. Apothecia also formed on roots, indicating that infections may also occur in the soil. Often young trees were killed by the formation of large basal lesions which did not arise from stem infections higher up. On first detecting the disease on the island of Ireland the Governments of NI and the Republic of Ireland published an “All-Ireland Chalara Control Strategy.” Part of that strategy was a ban on the importation of ash plants from regions where the disease was known to be present, to prevent the introduction of further inoculum, and the implementation of an ‘eradication and containment’ policy with the aim of preventing the establishment and spread of the disease. While these measures may have slowed disease establishment, they were ultimately unsuccessful and by 2018 ash dieback was widespread and established throughout the whole of NI in plantations and in the wider environment.Northern Ireland Department of Agriculture, Environment and Rural Affairs PhD Studentshi
    corecore