42 research outputs found

    Aufbau eines Versuchsstandes fĂŒr den ECH Upper Launcher in ITER - Schlussbericht zum Vorhaben 3FUS0010 (KIT Scientific Reports ; 7694)

    Get PDF
    Um PlasmainstabilitĂ€ten zu begegnen, werden in vier der oberen Ports im ITER VakuumgefĂ€ĂŸ Electron Cyclotron Launcher installiert. Diese bestehen im Wesentlichen aus einer trapezförmigen Stahlkonstruktion, welche die Mikrowellenkomponenten (im Wesentlichen Spiegel und Wellenleiter) beherbergt. Bei der Konstruktion eines solchen Launchers mĂŒssen als wesentliche Vorgaben die mechanische Festigkeit, die ausreichende KĂŒhlung des Systems und wirksame Abschirmung gegen Neutronen berĂŒcksichtigt werden

    The ITER EC H&CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    No full text
    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the launcher radial axis. The plant, where the maintenance under consideration is occurring, is the Hot Cell Facility Work Cell. The study here reported has been carried out within the presently ongoing EFDA Goal Oriented Training program on Remote Handling (GOT-RH), which aims to support ITER activities. This document and its contents have to be considered as part of a more vast RAMI analysis to be developed within the GOT-RH, which aims to maximize the Electron Cyclotron Heating and Current Drive system availability. The Baseline CAD model of the Electron Cyclotron Heating and Current Drive Upper Launcher is currently in its preliminary design phase and does not provide enough details for developing a fully detailed maintenance strategy. Therefore, through a System Engineering approach, a set of assumptions was conceived on the launcher structure, as a basis for development of a Remote Handling strategy. Moreover, to compare different design solutions related to the possibility of integrating a quasi-optical component into the Blanket Shield Module, a Trade-Off was made, and its contents are shown here. The outcome of this System Engineering approach has been formalized into Task Definition Forms whose contents are reported here. The Remote Handling strategy presented in this work will be tested in the near future both through Virtual Reality simulations and through prototype experiments

    The ITER EC H&CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    No full text
    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the launcher radial axis. The plant, where the maintenance under consideration is occurring, is the Hot Cell Facility Work Cell. The study here reported has been carried out within the presently ongoing EFDA Goal Oriented Training program on Remote Handling (GOT-RH), which aims to support ITER activities. This document and its contents have to be considered as part of a more vast RAMI analysis to be developed within the GOT-RH, which aims to maximize the Electron Cyclotron Heating and Current Drive system availability. The Baseline CAD model of the Electron Cyclotron Heating and Current Drive Upper Launcher is currently in its preliminary design phase and does not provide enough details for developing a fully detailed maintenance strategy. Therefore, through a System Engineering approach, a set of assumptions was conceived on the launcher structure, as a basis for development of a Remote Handling strategy. Moreover, to compare different design solutions related to the possibility of integrating a quasi-optical component into the Blanket Shield Module, a Trade-Off was made, and its contents are shown here. The outcome of this System Engineering approach has been formalized into Task Definition Forms whose contents are reported here. The Remote Handling strategy presented in this work will be tested in the near future both through Virtual Reality simulations and through prototype experiments

    Analysis of the ITER ECH Upper Port Launcher remote maintenance using virtual reality

    No full text
    All ITER sub-systems of remote handling (RH) classes 1 and 2 have to be remotely maintainable. The maintenance strategy for these components has to ensure system availability after failure or scheduled maintenance. This paper shows how virtual reality (VR) simulation [1] can be used as a tool to analyze the maintenance process, to predict the mean time to repair and to ensure the RH compatibility of one ITER sub-system, the Upper Port Launcher (UPL) [2]. Special emphasis is put on the development of RH procedures and the identification of tooling requirements. The possibility to simulate RH logistics and repair actions in an early stage of the design process allows for the identification of those maintenance actions that require dedicated tests in the Launcher Handling Test Facility at Karlsruhe. The VR analysis, together with dedicated mock-up tests will demonstrate the RH compatibility of the UPL plug, provide input to the design of the Port Plug maintenance area in the ITER Hot Cell, and support the development of RH maintenance tooling. © 2009

    ITER ECH&CD Upper Launcher: Design options and Remote Handling issues of the waveguide assembly

    No full text
    The ITER Electron Cyclotron Heating and Current Drive Upper Launcher, developed by the ECHUL-CA Consortium of Euratom Associations (CRPP, CNR, ITER-NL, IPF, IPP, KIT and Politecnico di Milano), is presently in its final design phase. The study presented here deals with design options and Remote Handling issues related to the waveguide assembly, an ensemble of mm-wave transmission line components mounted on a vacuum flange. This flange is part of the primary vacuum boundary of the ITER vessel. This paper describes the preliminary assessment of the RH compatibility of the sub-assembly, and a conceptual description of the maintenance actions to be performed on it. A comparison between two possible configurations for the tapers is reported: a waveguide integrated design, in which tapers are integral part of the in-plug waveguide, and an auxiliary shield integrated design, in which the tapers are integrated into the Auxiliary Shield. An important aspect in the design is to ensure the Remote Handling compatibility. Due to lack of space and limited dexterity of the slave manipulator, the general approach in defining the maintenance strategy is to avoid breaking the interfaces of the different components of the assembly, and to extract it from the Upper Port Plug as a single entity. An assessment on possible replacement procedure and the required tools are presented here

    ITER ECH&CD Upper Launcher: Design options and Remote Handling issues of the waveguide assembly

    No full text
    The ITER Electron Cyclotron Heating and Current Drive Upper Launcher, developed by the ECHUL-CA Consortium of Euratom Associations (CRPP, CNR, ITER-NL, IPF, IPP, KIT and Politecnico di Milano), is presently in its final design phase. The study presented here deals with design options and Remote Handling issues related to the waveguide assembly, an ensemble of mm-wave transmission line components mounted on a vacuum flange. This flange is part of the primary vacuum boundary of the ITER vessel. This paper describes the preliminary assessment of the RH compatibility of the sub-assembly, and a conceptual description of the maintenance actions to be performed on it. A comparison between two possible configurations for the tapers is reported: a waveguide integrated design, in which tapers are integral part of the in-plug waveguide, and an auxiliary shield integrated design, in which the tapers are integrated into the Auxiliary Shield. An important aspect in the design is to ensure the Remote Handling compatibility. Due to lack of space and limited dexterity of the slave manipulator, the general approach in defining the maintenance strategy is to avoid breaking the interfaces of the different components of the assembly, and to extract it from the Upper Port Plug as a single entity. An assessment on possible replacement procedure and the required tools are presented here
    corecore