2,943 research outputs found

    Adnexal Torsion in Pediatric Age: Does Bolli's Score Work? Report of Two Cases

    Get PDF
    Adnexal torsion is a surgical emergency requiring early diagnosis in order to avoid demolitive surgery. Adnexal torsion's diagnosis could be very difficult in pediatric patients because children cannot explain symptoms accurately. Furthermore reproductive organs lie high in abdomen, causing unclear examinations findings. For reducing diagnostic mistakes or delay clinical and hematological criteria could be useful. No radiological criteria (CT or MRI) should be taken in count because of the costs and the required time. By combining clinical presentation in patients with OT three useful diagnostic variables have been identified: age, duration of pain, vomiting. Presence of vomiting, short duration of abdominal pain and high CRP levels have great predictive value for the diagnosis of adnexal torsion. In those patients an exploratory laparoscopy should be performed without any doubt and/or delay. These data may aid physicians in the evaluation of abdominal pain in premenarchal girls

    High Performances Corrugated Feed Horns for Space Applications at Millimetre Wavelengths

    Full text link
    We report on the design, fabrication and testing of a set of high performance corrugated feed horns at 30 GHz, 70 GHz and 100 GHz, built as advanced prototypes for the Low Frequency Instrument (LFI) of the ESA Planck mission. The electromagnetic designs include linear (100 GHz) and dual shaped (30 and 70 GHz) profiles. Fabrication has been achieved by direct machining at 30 GHz, and by electro-formation at higher frequencies. The measured performances on side lobes and return loss meet the stringent Planck requirements over the large (20%) instrument bandwidth. Moreover, the advantage in terms of main lobe shape and side lobes levels of the dual profiled designs has been demonstrated.Comment: 16 pages, 7 figures, accepted for publication in Experimental Astronom

    An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays

    Full text link
    We present a global analysis of leptonic and semileptonic kaon decay data, including all recent results published by the BNL-E865, KLOE, KTeV, ISTRA+ and NA48 experiments. This analysis, in conjunction with precise lattice calculations of the hadronic matrix elements now available, leads to a very precise determination of |Vus| and allows us to perform several stringent tests of the Standard Model.Comment: LaTeX, 25 pages, 12 figures, 16 tables. Submitted to EPJC. v2: Minor changes for accepted version. No numerical results change

    Planck LFI flight model feed horns

    Full text link
    this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst The Low Frequency Instrument is optically interfaced with the ESA Planck telescope through 11 corrugated feed horns each connected to the Radiometer Chain Assembly (RCA). This paper describes the design, the manufacturing and the testing of the flight model feed horns. They have been designed to optimize the LFI optical interfaces taking into account the tight mechanical requirements imposed by the Planck focal plane layout. All the eleven units have been successfully tested and integrated with the Ortho Mode transducers.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T1200

    GPU-based Real-time Triggering in the NA62 Experiment

    Full text link
    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have been analyzed, pointing out that networking is the most critical one. To keep the latency of data transfer task under control, we devised NaNet, an FPGA-based PCIe Network Interface Card (NIC) with GPUDirect capabilities. For the processing task, we developed specific multiple ring trigger algorithms to leverage the parallel architecture of GPUs and increase the processing throughput to keep up with the high event rate. Results obtained during the first months of 2016 NA62 run are presented and discussed

    Noninvasiveness and time symmetry of weak measurements

    Full text link
    Measurements in classical and quantum physics are described in fundamentally different ways. Nevertheless, one can formally define similar measurement procedures with respect to the disturbance they cause. Obviously, strong measurements, both classical and quantum, are invasive -- they disturb the measured system. We show that it is possible to define general weak measurements, which are noninvasive: the disturbance becomes negligible as the measurement strength goes to zero. Classical intuition suggests that noninvasive measurements should be time symmetric (if the system dynamics is reversible) and we confirm that correlations are time-reversal symmetric in the classical case. However, quantum weak measurements -- defined analogously to their classical counterparts -- can be noninvasive but not time symmetric. We present a simple example of measurements on a two-level system which violates time symmetry and propose an experiment with quantum dots to measure the time-symmetry violation in a third-order current correlation function.Comment: 19 pages, 5 figures, more information at http://www.fuw.edu.pl/~abednorz/tasym

    Correlation between OCVD carrier lifetime vs temperature measurements and reverse recovery behavior of the body diode of SiC power MOSFETs

    Get PDF
    The reverse recovery (RR) behavior of SiC MOSFET body diode is of great importance in power application, where these devices are used in a wide range of operating temperatures. The carrier lifetime in the drift region varies with temperature, and it heavily affects the tailoring of the RR current, opening reliability issues related to the RR voltage amplitude and to possible anomalous voltage oscillations during the recovery. From the users' point of view, it would be useful to have a simple technique able to give predictive information about the body diode RR behavior of commercial devices over the whole range of working temperatures. An experimental-simulation approach is presented in this paper to correlate the carrier lifetime measured by simple OCVD measurements versus temperature with the RR behavior of the body diode, that can be useful at the design stage of power converters. Simulations of the body diode reverse-recovery are performed for a wide range of carrier lifetimes. This allows to estimate the effect of changes of carrier lifetime with temperature on the body diode switching transients. Preliminary results obtained with a 1700 V/5A commercial MOSFET are shown

    NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features

    Full text link
    While the GPGPU paradigm is widely recognized as an effective approach to high performance computing, its adoption in low-latency, real-time systems is still in its early stages. Although GPUs typically show deterministic behaviour in terms of latency in executing computational kernels as soon as data is available in their internal memories, assessment of real-time features of a standard GPGPU system needs careful characterization of all subsystems along data stream path. The networking subsystem results in being the most critical one in terms of absolute value and fluctuations of its response latency. Our envisioned solution to this issue is NaNet, a FPGA-based PCIe Network Interface Card (NIC) design featuring a configurable and extensible set of network channels with direct access through GPUDirect to NVIDIA Fermi/Kepler GPU memories. NaNet design currently supports both standard - GbE (1000BASE-T) and 10GbE (10Base-R) - and custom - 34~Gbps APElink and 2.5~Gbps deterministic latency KM3link - channels, but its modularity allows for a straightforward inclusion of other link technologies. To avoid host OS intervention on data stream and remove a possible source of jitter, the design includes a network/transport layer offload module with cycle-accurate, upper-bound latency, supporting UDP, KM3link Time Division Multiplexing and APElink protocols. After NaNet architecture description and its latency/bandwidth characterization for all supported links, two real world use cases will be presented: the GPU-based low level trigger for the RICH detector in the NA62 experiment at CERN and the on-/off-shore data link for KM3 underwater neutrino telescope

    GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC2

    Full text link
    The inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R~50,000) near-infrared spectra of three red supergiants in the young Scutum cluster RSGC2. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to identify several tens of atomic and molecular lines suitable for chemical abundance determinations. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and other iron-peak elements such as V, Cr, Ni, of alpha (O, Mg, Si, Ca and Ti) and other light elements (C, N, Na, Al, K, Sc), and of some s-process elements (Y, Sr). We found iron abundances between half and one third solar and solar-scaled [X/Fe] abundance patterns of iron-peak, alpha and most of the light elements, consistent with a thin-disk chemistry. We found a depletion of [C/Fe] and enhancement of [N/Fe], consistent with CN burning, and low 12C/13C abundance ratios (between 9 and 11), requiring extra-mixing processes in the stellar interiors during the post-main sequence evolution. Finally, we found a slight [Sr/Fe] enhancement and a slight [Y/Fe] depletion (by a factor of <=2), with respect to solar.Comment: Paper accepted on A&
    • …
    corecore