221 research outputs found

    STAR: Steiner tree approximation in relationship-graphs

    No full text
    Large-scale graphs and networks are abundant in modern information systems: entity-relationship graphs over relational data or Web-extracted entities, biological networks, social online communities, knowledge bases, and many more. Often such data comes with expressive node and edge labels that allow an interpretation as a semantic graph, and edge weights that reflect the strengths of semantic relations between entities. Finding close relationships between a given set of two, three, or more entities is an important building block for many search, ranking, and analysis tasks. From an algorithmic point of view, this translates into computing the best Steiner trees between the given nodes, a classical NP-hard problem. In this paper, we present a new approximation algorithm, coined STAR, for relationship queries over large graphs that do not fit into memory. We prove that for n query entities, STAR yields an O(log(n))-approximation of the optimal Steiner tree, and show that in practical cases the results returned by STAR are qualitatively better than the results returned by a classical 2-approximation algorithm. We then describe an extension to our algorithm to return the top-k Steiner trees. Finally, we evaluate our algorithm over both main-memory as well as completely disk-resident graphs containing millions of nodes. Our experiments show that STAR outperforms the best state-of-the returns qualitatively better results

    Role of Atypical Chemokine Receptors in Microglial Activation and Polarization.

    Get PDF
    Inflammatory reactions occurring in the central nervous system (CNS), known as neuroinflammation, are key components of the pathogenic mechanisms underlying several neurological diseases. The chemokine system plays a crucial role in the recruitment and activation of immune and non-immune cells in the brain, as well as in the regulation of microglia phenotype and function. Chemokines belong to a heterogeneous family of chemotactic agonists that signal through the interaction with G protein-coupled receptors (GPCRs). Recently, a small subset of chemokine receptors, now identified as “atypical chemokine receptors” (ACKRs), has been described. These receptors lack classic GPCR signaling and chemotactic activity and are believed to limit inflammation through their ability to scavenge chemokines at the inflammatory sites. Recent studies have highlighted a role for ACKRs in neuroinflammation. However, in the CNS, the role of ACKRs seems to be more complex than the simple control of inflammation. For instance, CXCR7/ACKR3 was shown to control T cell trafficking through the regulation of CXCL12 internalization at CNS endothelial barriers. Furthermore, D6/ACKR2 KO mice were protected in a model of experimental autoimmune encephalomyelitis (EAE). D6/ACKR2 KO showed an abnormal accumulation of dendritic cells at the immunization and a subsequent impairment in T cell priming. Finally, CCRL2, an ACKR-related protein, was shown to play a role in the control of the resolution phase of EAE. Indeed, CCRL2 KO mice showed exacerbated, non- resolving disease with protracted inflammation and increased demyelination. This phenotype was associated with increased microglia and macrophage activation markers and imbalanced M1 vs. M2 polarization. This review will summarize the current knowledge on the role of the ACKRs in neuroinflammation with a particular attention to their role in microglial polarization and function

    Population pharmacokinetics and pharmacodynamic target attainment of isavuconazole against aspergillus fumigatus and aspergillus flavus in adult patients with invasive fungal diseases: Should therapeutic drug monitoring for isavuconazole be considered as mandatory as for the other mold-active azoles?

    Get PDF
    Isavuconazole is a newer broad-spectrum triazole approved for the treatment of invasive fungal disease. The objective of this study was to conduct a population pharmacokinetic and pharma-codynamic analysis of isavuconazole in a retrospective cohort of hospitalized patients. A nonlinear mixed-effect approach with Monte Carlo simulations was conducted to assess the probability of target attainment (PTA) of an area under the concentration–time curve (AUC24 h )/minimum inhibitory concentration (MIC) ratio of 33.4 (defined as efficacy threshold against A. fumigatus and A. flavus) associated with a maintenance dose (MD) of 100, 200 and 300 mg daily after loading. The cumulative fraction of response (CFR) against the EUCAST MIC distributions of A. fumigatus and A. flavus was calculated as well. The proportion of trough concentrations (Ctrough ) exceeding a defined threshold of toxicity (>5.13 mg/L) was estimated. A total of 50 patients, with a median age of 61.5 years, pro-vided 199 plasma isavuconazole concentrations. Invasive pulmonary aspergillosis was the prevalent type of infection and accounted for 80% (40/50) of cases. No clinical covariates were retained by the model. With the standard MD of 200 mg daily, CFRs were always ≥90% during the first two months of treatment. The risk of Ctrough < 1.0 mg/L was around 1%, and that of Ctrough > 5.13 mg/L was 27.7 and 39.2% at 28 and 60 days, respectively, due to isavuconazole accumulation over time. Our findings suggest that TDM for isavuconazole should not be considered as mandatory as for the other mold-active azoles voriconazole and posaconazole

    Rapid and persistent selection of the K103N mutation as a majority quasispecies in a HIV1-patient exposed to efavirenz for three weeks: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Selection of the K103N mutation is associated with moderately reduced in vitro fitness of HIV. Strains bearing K103N in vivo tend to persist, even in the absence of additional drug pressure, as minority quasispecies, often undetectable in genotyping resistance testing assays, performed at standard conditions. Here, we report on the rapid and long lasting selection of a K103N bearing strain as the dominant quasispecies after very short exposure to efavirenz in vivo.</p> <p>Case presentation</p> <p>A 55-year-old Caucasian man was switched to efavirenz, zidovudine and lamivudine in February 2003, while on viral suppression in his first-line highly active anti-retroviral treatment regimen. One month later, he reported inconsistent adherence and his viremia level was 5700 c/mL. He did not attend further checkups until September 2005, when his viral load was 181,000 c/mL. The patient reported interrupting his medications approximately three weeks after simplification. The genotyping resistance testing assay was performed both on HIV RNA and HIV DNA from plasma, yielding an identical pattern with the isolate presence of the K103N mutation in the prevalent strain.</p> <p>Conclusion</p> <p>Persistence of the K103N mutation as a majority quasispecies may ensue after a very short exposure to efavirenz. Our case would therefore suggest that the presence of the K103N mutation should always be ruled out by genotyping resistance testing assays, even after minimal exposures to efavirenz.</p

    Recognition in emergency department of septic patients at higher risk of death: Beware of patients without fever

    Get PDF
    Background and Objectives: Chances of surviving sepsis increase markedly upon prompt diagnosis and treatment. As most sepsis cases initially show-up in the Emergency Department (ED), early recognition of a septic patient has a pivotal role in sepsis management, despite the lack of precise guidelines. The aim of this study was to identify the most accurate predictors of in-hospital mortality outcome in septic patients admitted to the ED. Materials and Methods: We compared 651 patients admitted to ED for sepsis (cases) with 363 controls (non-septic patients). A Bayesian mean multivariate logistic regression model was performed in order to identify the most accurate predictors of in-hospital mortality outcomes in septic patients. Results: Septic shock and positive qSOFA were identified as risk factors for in-hospital mortality among septic patients admitted to the ED. Hyperthermia was a protective factor for in-hospital mortality. Conclusions: Physicians should bear in mind that fever is not a criterium for defining sepsis; according to our results, absence of fever upon presentation might be indicative of greater severity and diagnosis of sepsis should not be delayed

    Mid-regional pro-adrenomedullin as a supplementary tool to clinical parameters in cases of suspicion of infection in the emergency department

    Get PDF
    Introduction: Mid-regional proadrenomedullin (MR-proADM), a novel biomarker, has recently gained interest particularly with regards to its potential in assisting clinicians\u2019 decision making in patients with suspicion of infection in the emergency department (ED). A group of international experts, with research and experience in MR-proADM applications, produced this review based on their own experience and the currently available literature. Areas covered: The review provides evidence related to MR-proADM as a triaging tool in avoiding unnecessary admissions to hospital and/or inadequate discharge, and identifying patients most at risk of deterioration. It also covers the use of MR-proADM in the context of COVID-19. Moreover, the authors provide a proposal on how to incorporate MR-proADM into patients\u2019 clinical pathways in an ED setting. Expert opinion: The data we have so far on the application of MR-proADM in the ED is promising. Incorporating it into clinical scoring systems may aid the clinician\u2019s decision making and recognizing the \u2018ill looking well\u2019 and the \u2018well looking ill\u2019 sooner. However there are still many gaps in our knowledge especially during the ongoing COVID-19 waves. There is also a need for cost-effectiveness analysis studies especially in the era of increasing cost pressures on health systems globally

    L-dopa and dopamine-(R)-alpha-lipoic acid conjugates as multifunctional codrugs with antioxidant properties

    Get PDF
    A series of multifunctional codrugs (1-4), obtained by joining L-Dopa (LD) and dopamine (DA) with (R)-R-lipoic acid (LA), was synthesized and evaluated as potential codrugs with antioxidant and iron-chelating properties. These multifunctional molecules were synthesized to overcome the pro-oxidant effect associated with LD therapy. The physicochemical properties, together with the chemical and enzymatic stabilities of synthesized compounds, were evaluated in order to determine both their stability in aqueous medium and their sensitivity in undergoing enzymatic cleavage by rat and human plasma to regenerate the original drugs. The new compounds were tested for their radical scavenging activities, using a test involving the Fe (II)- H2O2-induced degradation of deoxyribose, and to evaluate peripheral markers of oxidative stress such as plasmatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma. Furthermore, we showed the central effects of compounds 1 and 2 on spontaneous locomotor activity of rats in comparison with LD-treated animals. From the results obtained, compounds 1-4 appeared stable at a pH of 1.3 and in 7.4 buffered solution; in 80% human plasma they were turned into DA and LD. Codrugs 1-4 possess good lipophilicity (log P > 2 for all tested compounds). Compounds 1 and 2 seem to protect partially against the oxidative stress deriving from auto-oxidation and MAO-mediated metabolism of DA. This evidence, together with the “in vivo” dopaminergic activity and a sustained release of the parent drug in human plasma, allowed us to point out the potential advantages of using 1 and 2 rather than LD in treating pathologies such as Parkinson’s disease, characterized by an evident decrease of DA concentration in the brain
    • …
    corecore