333 research outputs found

    Role of Atypical Chemokine Receptors in Microglial Activation and Polarization.

    Get PDF
    Inflammatory reactions occurring in the central nervous system (CNS), known as neuroinflammation, are key components of the pathogenic mechanisms underlying several neurological diseases. The chemokine system plays a crucial role in the recruitment and activation of immune and non-immune cells in the brain, as well as in the regulation of microglia phenotype and function. Chemokines belong to a heterogeneous family of chemotactic agonists that signal through the interaction with G protein-coupled receptors (GPCRs). Recently, a small subset of chemokine receptors, now identified as “atypical chemokine receptors” (ACKRs), has been described. These receptors lack classic GPCR signaling and chemotactic activity and are believed to limit inflammation through their ability to scavenge chemokines at the inflammatory sites. Recent studies have highlighted a role for ACKRs in neuroinflammation. However, in the CNS, the role of ACKRs seems to be more complex than the simple control of inflammation. For instance, CXCR7/ACKR3 was shown to control T cell trafficking through the regulation of CXCL12 internalization at CNS endothelial barriers. Furthermore, D6/ACKR2 KO mice were protected in a model of experimental autoimmune encephalomyelitis (EAE). D6/ACKR2 KO showed an abnormal accumulation of dendritic cells at the immunization and a subsequent impairment in T cell priming. Finally, CCRL2, an ACKR-related protein, was shown to play a role in the control of the resolution phase of EAE. Indeed, CCRL2 KO mice showed exacerbated, non- resolving disease with protracted inflammation and increased demyelination. This phenotype was associated with increased microglia and macrophage activation markers and imbalanced M1 vs. M2 polarization. This review will summarize the current knowledge on the role of the ACKRs in neuroinflammation with a particular attention to their role in microglial polarization and function

    The genetic structure and connectivity in two sympatric rodent species with different life histories are similarly affected by land use disturbances

    Get PDF
    The negative impact of habitat fragmentation due to human activities may be different in different species that co-exist in the same area, with consequences on the development of environmental protection plans. Here we aim at understanding the effects produced by different natural and anthropic landscape features on gene flow patterns in two sympatric species with different specializations, one generalist and one specialist, sampled in the same locations. We collected and genotyped 194 wood mice (generalist species) and 199 bank voles (specialist species) from 15 woodlands in a fragmented landscape characterized by different potential barriers to dispersal. Genetic variation and structure were analyzed in the two species, respectively. Effective migration surfaces, isolation-by-resistance (IBR) analysis, and regression with randomization were used to investigate isolation-by-distance (IBD) and the relative importance of land cover elements on gene flow. We observed similar patterns of heterozygosity and IBD for both species, but the bank vole showed higher genetic differences among geographic areas. The IBR analysis suggests that (i) connectivity is reduced in both species by urban areas but more strongly in the specialist bank vole; (ii) cultivated areas act as dispersal corridors in both species; (iii) woodlands appear to be an important factor in increasing connectivity in the bank vole, and less so in the wood mouse. The difference in dispersal abilities between a generalist and specialist species was reflected in the difference in genetic structure, despite extensive habitat changes due to human activities. The negative effects of fragmentation due to the process of urbanization were, at least partially, mitigated by another human product, i.e., cultivated terrains subdivided by hedgerows, and this was true for both species

    Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids

    Get PDF
    Pyrethroids are a class of insecticides involved in different neurological disorders. They cross the blood–brain barrier and exert their effect on dopaminergic system, contributing to the burden of oxidative stress in Parkinson’s disease through several pathways. The aim of the present study was to evaluate the effect of neonatal exposition to permethrin and cypermethrin (1/10 of DL50) in rats from the eighth to the fifteenth day of life. Open-field studies showed increased spontaneous locomotor activity in the groups treated with permethrin and the one treated with cypermethrin, while a higher number of center entries and time spent in the center was observed for the cypermethrin-treated group. Lower dopamine and higher homovanillic acid levels were measured in the striatum from both treated groups. A reduction of blood glutathione peroxidase content was measured, while no change in blood superoxide dismutase was observed. Carbonyl group formation increased in striatum, but not in erythrocytes. Lipid peroxidation occurred in erythrocytes, but not in striatum. No changes in fluidity at different depths of plasma membrane were measured in striatum or erythrocytes. The activation of monocyte NADPH oxidase by phorbol esters (PMA) shows that superoxide anion production was reduced in the pyrethroid-treated groups compared to the control group. Our studies suggest that neonatal exposition to permethrin or cypermethrin induces long-lasting effects after developmental exposure giving changes in open-field behaviors, striatal monoamine level, and increased oxidative stress. Although the action of pyrethroids on various target cells is different, a preferential interaction with the extracellular side of plasma membrane proteins can be observed

    Population pharmacokinetics and pharmacodynamic target attainment of isavuconazole against aspergillus fumigatus and aspergillus flavus in adult patients with invasive fungal diseases: Should therapeutic drug monitoring for isavuconazole be considered as mandatory as for the other mold-active azoles?

    Get PDF
    Isavuconazole is a newer broad-spectrum triazole approved for the treatment of invasive fungal disease. The objective of this study was to conduct a population pharmacokinetic and pharma-codynamic analysis of isavuconazole in a retrospective cohort of hospitalized patients. A nonlinear mixed-effect approach with Monte Carlo simulations was conducted to assess the probability of target attainment (PTA) of an area under the concentration–time curve (AUC24 h )/minimum inhibitory concentration (MIC) ratio of 33.4 (defined as efficacy threshold against A. fumigatus and A. flavus) associated with a maintenance dose (MD) of 100, 200 and 300 mg daily after loading. The cumulative fraction of response (CFR) against the EUCAST MIC distributions of A. fumigatus and A. flavus was calculated as well. The proportion of trough concentrations (Ctrough ) exceeding a defined threshold of toxicity (>5.13 mg/L) was estimated. A total of 50 patients, with a median age of 61.5 years, pro-vided 199 plasma isavuconazole concentrations. Invasive pulmonary aspergillosis was the prevalent type of infection and accounted for 80% (40/50) of cases. No clinical covariates were retained by the model. With the standard MD of 200 mg daily, CFRs were always ≥90% during the first two months of treatment. The risk of Ctrough < 1.0 mg/L was around 1%, and that of Ctrough > 5.13 mg/L was 27.7 and 39.2% at 28 and 60 days, respectively, due to isavuconazole accumulation over time. Our findings suggest that TDM for isavuconazole should not be considered as mandatory as for the other mold-active azoles voriconazole and posaconazole

    Ibuprofen and Lipoic Acid Diamide as Co-Drug with Neuroprotective Activity: Pharmacological Properties and Effects in β-Amyloid (1–40) Infused Alzheimer's Disease Rat Model

    Get PDF
    Both oxidative stress and inflammation are elevated in brains of Alzheimer's disease patients, but their pathogenic significance still remains unclear. Current evidence support the hypothesis that non-steroidal anti-inflammatory drugs (NSAIDs) and antioxidant therapy might protect against the development of Alzheimer's disease, and ibuprofen has the strongest epidemiological support. In the present work our attention was focused on (R)-α-lipoic acid considered as a potential neuroprotective agent in Alzheimer's disease therapy. In particular, we investigated a new co-drug (1) obtained by joining (R)-α-lipoic acid and ibuprofen via a diamide bond, for evaluating its potential to antagonize the deleterious structural and cognitive effects of β-amyloid (1–40) in an infused Alzheimer's disease rat model. Our results indicated that infusion of β-amyloid (1–40) impairs memory performance through a progressive cognitive deterioration; however, ibuprofen and co-drug 1 seemed to protect against behavioural detriment induced by simultaneous administration of β-amyloid (1–40) protein. The obtained data were supported by the histochemical findings of the present study: β-amyloid protein was less expressed in 1-treated than in ibuprofen and (R)-α-lipoic acid alone-treated cerebral cortex. Taken together, the present findings suggest that co-drug 1 treatment may protect against the cognitive dysfunction induced by intracerebroventricular infusion of β-amyloid (1–40) in rats. Thus, co-drug 1 could prove useful as a tool for controlling Alzheimer's disease-induced cerebral amyloid deposits and behavioural deterioration

    Event Detection in Optical Signals via Domain Adaptation

    Get PDF
    Data-driven models trained in an end-to-end manner can reliably detect events within optical signals. Unfortunately, event detection models poorly generalize when monitoring signals collected from devices with different acquisition procedures. We overcome this limitation by presenting a novel domain adaptation solution for event detection networks that enables inference across multiple types of devices. Rather than training a black-box detection network, we decouple event localization and classification tasks. Localization is performed by the Interval Proposal Algorithm (IPA), which leverages signal processing techniques to localize candidate events and derive context features. These events are then standardized and fed to a feature extractor to obtain morphological features. By combining domain-specific context features with domain-invariant morphological features, the classifier achieves good generalization capabilities through different domains. Our method can successfully detect events in OTDR traces achieving a [email protected] of 75.33% on traces from the source domain and generalizing well ([email protected] of 69.27%) on traces from the target domain, despite being trained solely from the source domain

    Recognition in emergency department of septic patients at higher risk of death: Beware of patients without fever

    Get PDF
    Background and Objectives: Chances of surviving sepsis increase markedly upon prompt diagnosis and treatment. As most sepsis cases initially show-up in the Emergency Department (ED), early recognition of a septic patient has a pivotal role in sepsis management, despite the lack of precise guidelines. The aim of this study was to identify the most accurate predictors of in-hospital mortality outcome in septic patients admitted to the ED. Materials and Methods: We compared 651 patients admitted to ED for sepsis (cases) with 363 controls (non-septic patients). A Bayesian mean multivariate logistic regression model was performed in order to identify the most accurate predictors of in-hospital mortality outcomes in septic patients. Results: Septic shock and positive qSOFA were identified as risk factors for in-hospital mortality among septic patients admitted to the ED. Hyperthermia was a protective factor for in-hospital mortality. Conclusions: Physicians should bear in mind that fever is not a criterium for defining sepsis; according to our results, absence of fever upon presentation might be indicative of greater severity and diagnosis of sepsis should not be delayed

    L-dopa and dopamine-(R)-alpha-lipoic acid conjugates as multifunctional codrugs with antioxidant properties

    Get PDF
    A series of multifunctional codrugs (1-4), obtained by joining L-Dopa (LD) and dopamine (DA) with (R)-R-lipoic acid (LA), was synthesized and evaluated as potential codrugs with antioxidant and iron-chelating properties. These multifunctional molecules were synthesized to overcome the pro-oxidant effect associated with LD therapy. The physicochemical properties, together with the chemical and enzymatic stabilities of synthesized compounds, were evaluated in order to determine both their stability in aqueous medium and their sensitivity in undergoing enzymatic cleavage by rat and human plasma to regenerate the original drugs. The new compounds were tested for their radical scavenging activities, using a test involving the Fe (II)- H2O2-induced degradation of deoxyribose, and to evaluate peripheral markers of oxidative stress such as plasmatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma. Furthermore, we showed the central effects of compounds 1 and 2 on spontaneous locomotor activity of rats in comparison with LD-treated animals. From the results obtained, compounds 1-4 appeared stable at a pH of 1.3 and in 7.4 buffered solution; in 80% human plasma they were turned into DA and LD. Codrugs 1-4 possess good lipophilicity (log P > 2 for all tested compounds). Compounds 1 and 2 seem to protect partially against the oxidative stress deriving from auto-oxidation and MAO-mediated metabolism of DA. This evidence, together with the “in vivo” dopaminergic activity and a sustained release of the parent drug in human plasma, allowed us to point out the potential advantages of using 1 and 2 rather than LD in treating pathologies such as Parkinson’s disease, characterized by an evident decrease of DA concentration in the brain
    • …
    corecore