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Abstract
The negative impact of habitat fragmentation due to human activities may be different in different species that co-exist in the 
same area, with consequences on the development of environmental protection plans. Here we aim at understanding the effects 
produced by different natural and anthropic landscape features on gene flow patterns in two sympatric species with different 
specializations, one generalist and one specialist, sampled in the same locations. We collected and genotyped 194 wood mice 
(generalist species) and 199 bank voles (specialist species) from 15 woodlands in a fragmented landscape characterized by 
different potential barriers to dispersal. Genetic variation and structure were analyzed in the two species, respectively. Effec-
tive migration surfaces, isolation-by-resistance (IBR) analysis, and regression with randomization were used to investigate 
isolation-by-distance (IBD) and the relative importance of land cover elements on gene flow. We observed similar patterns 
of heterozygosity and IBD for both species, but the bank vole showed higher genetic differences among geographic areas. 
The IBR analysis suggests that (i) connectivity is reduced in both species by urban areas but more strongly in the specialist 
bank vole; (ii) cultivated areas act as dispersal corridors in both species; (iii) woodlands appear to be an important factor 
in increasing connectivity in the bank vole, and less so in the wood mouse. The difference in dispersal abilities between a 
generalist and specialist species was reflected in the difference in genetic structure, despite extensive habitat changes due to 
human activities. The negative effects of fragmentation due to the process of urbanization were, at least partially, mitigated 
by another human product, i.e., cultivated terrains subdivided by hedgerows, and this was true for both species.

Keywords  Fragmented habitat · Bank vole · Wood mouse · Landscape genetics · Isolation-by-resistance · Anthropogenic 
landscape

Introduction

Habitat loss and fragmentation have negative impacts on 
populations, and are considered as one of the main causes of 
biodiversity loss and therefore a major issue in conservation 
biology (Fischer and Lindenmayer 2007; Wilson et al. 2016; 
Wu 2013). In particular, anthropogenic habitat fragmenta-
tion has modified the distribution and population sizes in 
many different organisms (Crooks et al. 2017; Haddad et al. 
2015) with local and/or global reduction of genetic diver-
sity and connectivity (DiBattista 2008; Leigh et al. 2019). 
Monitoring the genetic consequences of human activities 
that increase habitat fragmentation is therefore important to 
develop appropriate conservation and management strategies 
(Hoban et al. 2020).
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The major consequence of habitat loss and fragmentation 
is to create discontinuities (i.e., patchiness) in the distribu-
tion of critical resources (e.g., food, habitat, water) or in 
environmental conditions (e.g., microclimate) (Segelbacher 
et al. 2010). Such discontinuities reduce connectivity among 
populations (Kindlmann and Burel 2008), threatening their 
long-term viability due to genetic (e.g., reduced evolution-
ary potential and inbreeding depression) and demographic 
factors (e.g., demographic stochasticity) (Balkenhol and 
Waits 2009). Habitat fragmentation may also have different 
short-term consequences in different species, for example, 
by reducing the suitable habitats or increasing the predation 
success, but these effects poorly predict long-term responses 
(Evans et al. 2017). Gene flow among subpopulations is 
necessary to alleviate the adverse genetic consequences 
of population fragmentation, reducing genetic drift and 
maintaining local genetic variation (Frankham et al. 2017). 
From a conservation perspective, inferring the functional 
connectivity of populations across landscapes becomes cru-
cial (Segelbacher et al. 2010). Identifying the areas where 
gene flow is either facilitated or prevented, and the landscape 
factors responsible for that, is a high priority (Sork 2016; 
Trombulak and Baldwin 2010).

One interesting opportunity to investigate the causes and 
the genetic consequences of fragmentation is represented 
by sympatric species with partially overlapping ecological 
niches (Homola et al. 2019; Varudkar and Ramakrishnan 
2015). Different species, in fact, may respond very differ-
ently to the same landscape matrix (Frantz et al. 2012; Gan-
gadharan et al. 2016; Nevill et al. 2019; Robertson et al. 
2018; Thatte et al. 2020). They may also react differently to 
the fragmentation of their previously continuous habitat, and 
these differences may be reflected in the geographic distribu-
tion of their genetic variation. In this work, we investigate 
the effects of habitat fragmentation present in agricultural 
landscapes in Central Italy on the genetic structure of two 
sympatric rodent species, the wood mouse (Apodemus syl-
vaticus) and the bank vole (Myodes glareolus).

The wood mouse is a generalist species known to inhabit 
a wide range of habitats including forests, hedgerows and 
agricultural fields (Marsh and Harris 2000; Montgomery and 
Dowie 1993; Mortelliti et al. 2010). In contrast, the bank 
vole is a “forest specialist”, i.e., it is more strictly associated 
with forest habitats, from mature stands to recently coppiced 
woodlands (Capizzi and Luiselli 1996; Ecke et al. 2002). 
In general, specialist species tend to be more affected by 
habitat fragmentation than generalist species. In fact, highly 
dispersed resources are harder to reach by the specialist spe-
cies (Braschler and Baur 2005; Nupp and Swihart 2001; 
Youngentob et al. 2012), which also suffer from competi-
tive exclusion by the generalist species (Sozio and Mortelliti 
2016). Accordingly, the specialist bank vole seems to prefer 
sites with high connectivity (Mortelliti et al. 2009; Sozio and 

Mortelliti 2016), and the generalist wood mouse can also 
be found in highly fragmented habitats, being able to move 
across cultivated fields (Sozio and Mortelliti 2016; Sozio 
et al. 2013). We currently do not know whether these dif-
ferences directly correspond to a stronger genetic structure 
in the bank vole compared to the wood mouse, and if (and 
how) different natural or anthropogenic habitat features have 
different relative impacts on gene flow. Our study addresses 
these questions following three steps: (i) neutral genetic 
markers will be used to estimate the genetic diversity and the 
population structure separately in each species; (ii) patterns 
of increased and reduced gene flow will be analyzed and 
compared between species; and (iii) species-specific land-
scape features with the largest influence on genetic variation 
patterns will be identified.

Materials and methods

Study area and sample method

The study was conducted in a fragmented landscape (< 20% 
of residual woodland cover) located in central Italy (coor-
dinates: 42°30′50″, 12°4′40″; elevation: 350 m; Fig. 1; 
Table S1).

Woodland patches, consisting of mixed deciduous forest 
dominated by downy and turkey oaks (Quercus pubescens 
and Quercus cerris), were embedded in an agricultural 
matrix (mainly wheat fields) crossed by a network of hedge-
rows providing structural connectivity to habitat patches. 
The S2 highway and a railway bisect the study area, poten-
tially acting as barriers to wildlife movements (Grilo et al. 
2009). Urban areas are also present and represent approxi-
mately 5% of the total area. Twelve trapping sessions were 
conducted over a 2 year period, with bi-monthly trapping 
from April 2011 to February 2013. During each session, 
grids were trapped for three consecutive nights. A total of 
199 bank voles and 194 wood mice samples were obtained. 
Sample sizes for each of the 15 different woodland patches 
is reported in Table 1. All the procedures of trapping and 
manipulation of animals took place in compliance with the 
European Council Directive 92/43EEC (Italian law D.Lgs 
157/92 and LR 3/1994) and with the European Council 
Directive 86/609/EEC (Italian law D.Lgs 116/92). The cap-
ture and handling of species listed in the EU Habitat Direc-
tive was covered by permit number PNM 0024822 granted 
to A. M. by the Ministry of Environment, Rome, Italy.

Genotyping

Genomic DNA was extracted from the mouse ear lobe sam-
ples using the NucleoSpin® Tissue kit (Macherey–Nagel, 
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Fig. 1   Map of the study area in the Province of Viterbo, Central Italy. Landscape is reclassified according to the features utilized in the IBR 
analysis. RA represent the only railway intersecting the study area. Population codes are shown in Table 1

Table 1   Genetic diversity 
indices in the wood mouse 
and the bank vole populations: 
sample size (N), number of 
alleles (Na), allelic richness 
(Ar), observed heterozygosity 
(Ho), and expected 
heterozygosity (He)

Population Wood mouse Bank vole

N Na Ar Ho He N Na Ar Ho He

ALB 10 54 5.5 0.75 0.71 13 57 6.2 0.57 0.78
BRN 7 48 5.5 0.72 0.75 14 64 6.7 0.67 0.81
FDT 14 79 5.8 0.74 0.81 14 65 6.8 0.71 0.8
FRR 14 72 5.4 0.72 0.74 13 62 6.5 0.68 0.79
GST 14 62 4.8 0.66 0.75 14 57 5.9 0.72 0.76
API 14 66 5 0.73 0.71 14 47 5.2 0.72 0.74
IUG 14 65 5 0.7 0.73 14 52 5.8 0.67 0.77
MCD 14 65 5.2 0.64 0.69 14 44 4.8 0.65 0.68
MZZ 14 69 5 0.71 0.7 13 55 6.2 0.69 0.77
PRV 9 34 4.3 0.91 0.69 11 40 5 0.66 0.65
YAH 14 71 5.4 0.72 0.73 12 54 6.3 0.68 0.71
CRC​ 14 57 4.6 0.55 0.66 14 45 4.8 0.57 0.68
SCP 14 66 5.1 0.69 0.73 13 57 6.3 0.56 0.77
TST 14 65 5.1 0.66 0.68 13 50 5.6 0.59 0.69
VRG 14 65 5.1 0.66 0.73 13 49 5.7 0.67 0.76
Mean 12.9 62.5 5.1 0.71 0.72 13.3 53.2 5.9 0.65 0.74
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Düren, Germany) according to the manufacturer’s protocol 
or using the Chelex-based DNA extraction method (Casquet 
et al. 2012). Eight microsatellite loci were used for the bank 
vole: Cg13B8, Cg6A1, Cg3F12, Cg13H9, Cg2E2, Cg3E10, 
Cg2A4 and Cg3A8 (Rikalainen et al. 2008). Seven micros-
atellite loci, described for members of the genus Apodemus, 
were used for the wood mouse: As-7, As11, As-12, As-20, 
As-34, GTTD9A and MsAf-8 (Gockel et al. 1997; Harr et al. 
2000; Makova et al. 1998). A two-step PCR with the fol-
lowing conditions was carried out: initial denaturation at 
95 °C for 15 min, followed by 30 cycles at 95 °C for 30 s, 
56 °C for 45 s and 72 °C for 45 s, followed by eight cycles 
at 95 °C for 30 s, 53 °C for 45 s and 72 °C for 45 s, and a 
final elongation at 72 °C for 30 min. The forward primers 
were 5’ labelled with one of the following fluorescent labels: 
FAM, VIC, NED and PET. Fragments were analyzed on 
an ABI3130 capillary analyzer (Applied Biosystems, Life 
Technologies Corporation). Fragment data were analyzed 
using Peak Scanner Software (Applied Biosystems, Life 
Technologies Corporation).

Genetic diversity

Descriptive statistics of nuclear genetic diversity were esti-
mated separately for each population (woodland patch) in 
each species. The mean number of alleles, and the observed 
and expected heterozygosities, were estimated using Genalex 
6.5 (Peakall and Smouse 2006), and the same program was 
used to test for deviation from Hardy–Weinberg equilibrium. 
Allelic richness (AR) was calculated using the rarefaction 
procedure in the Fstat 2.9.4 software (Goudet 2001). Arle-
quin 3.5.2.2 (Excoffier and Lischer 2010) was used to test 
for linkage disequilibrium between each pair of loci for each 
sampling population following a likelihood-ratio statistic, 
whose null distribution was obtained by a permutation 
procedure. We applied sequential Bonferroni corrections 
to account for multiple comparisons (Rice 1989). Micro-
Checker 2.2.3 (Van Oosterhout et al. 2004) ⁠ was used to 
check for null alleles and scoring errors. FREENA (Chapuis 
and Estoup 2007) ⁠ was used to compare uncorrected and cor-
rected FST values to test for the impact of null alleles, when 
present. Genetic differentiation measured as FST values 
(Weir and Cockerham 1984) was estimated for each pair of 
sampling population with Arlequin. Statistical significance 
of the FST values was tested using 10000 permutations, and 
P values were multiplied by the total number of comparisons 
following the conservative Bonferroni approach for multiple 
testing.

Genetic structure

A Bayesian clustering method was used to identify the num-
ber of genetic groups (STRU​CTU​RE v2.3.4; Pritchard et al. 
2000). A burn-in length of 50,000 iterations and a run length 
of 100,000 iterations were used in an admixture model with 
correlated allele frequencies among populations testing each 
K value between 1 and 15. Each K value was run 10 times. 
The optimal K value was determined using the ∆K method 
(Evanno et al. 2005) implemented in the online tool STRU​
CTU​RE Harvester (Earl and VonHoldt 2012). CLUMPP 
(Jakobsson and Rosenberg 2007) was then applied to aver-
age the multiple runs given by STRU​CTU​RE and to verify 
correct label switching. To display the results, the output 
from CLUMPP was visualized with DISTRUCT (Rosenberg 
2004).

Visualizing deviation from Isolation by Distance

Genetic diversity between populations often exhibits pat-
terns consistent with Isolation-by-Distance (IBD) (Wright 
1943), where populations far apart in the geographic space 
receive less gene flow than neighbouring ones. Given the 
ubiquity of this phenomenon (Kuchta and Tan 2005; Shar-
bel et al. 2000) it is interesting to see locations where this 
does not hold true, as they might represent barriers or zones 
of high contact. Global deviation from IBD can be iden-
tified, for example, studying the decrease of similarity or 
autocorrelation with geographic distance. However, specific 
deviations in some areas, but not in others, cannot be easily 
investigated and visualized by standard methods. One recent 
solution to this problem comes from the use of Estimated 
Effective Migration Surfaces (EEMS; Petkova et al. 2015). 
EEMS employs individual based migration rates in order to 
visualize zones with higher or lower migration with respect 
to the overall rate. These areas represent locations in which 
the pattern of gene flow predicted by IBD is facilitated or 
hindered. The region under study was first divided in a grid 
of demes and the individuals were assigned to the deme 
closest to their sampling location. The matrix of effective 
migration rates was then computed by EEMS based on the 
stepping-stone model (Kimura and Weiss 1964) ⁠ and on 
resistance distances (McRae 2006). We used the EEMS 
script for microsatellites analysis runeems_sats available 
from Github (https://​github.​com/​dipet​kov/​eems) to construct 
EEMS surfaces for the bank vole and the wood mouse. Con-
sidering that the number of demes simulated during the grid 
construction phase can influence the scale of the deviation 
from the overall migration rate, we averaged three runs with 
50, 100, 200, 300 and 400 demes to produce the final EEMS 
surface. Each single run consisted of 200,000 burn in steps 
followed by 1,000,000 MCMC iterations sampled every 

https://github.com/dipetkov/eems
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10000 steps. We plotted the averaged EEMS and checked for 
MCMC convergence using the rEEMSplots package in R.

Isolation by resistance

Understanding the effect of environmental components on 
the genetic makeup of natural populations is the goal of 
landscape genetics, which integrates population genetics, 
landscape ecology and spatial statistics (Holderegger and 
Wagner 2008; Manel et al. 2003; Storfer et al. 2007). One of 
the techniques more commonly used in landscape genetics to 
identify discontinuities in gene flow and determine the rela-
tive resistance to movement imposed by different landscape 
elements is Isolation-by-Resistance (IBR; McRae 2006). 
IBR offers a conceptual model in which landscape resistance 
is the analogue of electrical resistance, and the movements 
of individuals and flow of genes are analogues of electrical 
current (Amos et al. 2012). It greatly extends the ability to 
model multiple complementary paths of connectivity, while 
being sufficiently computationally efficient to allow its use 
over large landscapes at relatively fine resolution (McRae 
and Beier 2007; McRae et al. 2008). In order to analyze the 
effect of specific landscape components on gene flow, we 
tested for the presence of IBR. We first constructed a raster 
grid encompassing all our study area reclassifying the land 
cover based on features that were a priori most likely to 
affect gene flow in both the bank vole and the wood mouse: 
woodland, urban areas, cultivated terrain and hedgerows 
(Fig. 1). We obtained a raster file encompassing the entire 
studied area with a resolution of 10 m that was previously 
classified based on major land cover types (CORINE Land 
Cover; Büttner et al. 2004). Aerial photographs were used 
to add the locations of hedgerows with the same resolution 
(Sozio and Mortelliti 2016). We also included in our raster 
grid the major roads intersecting our study area from Open-
StreetMap (http://​www.​opens​treet​map.​org) and the railways 
tracks from the DIVA-GIS database (http://​www.​diva-​gis.​
org/​gdata).

In order to determine the relative importance of land 
cover elements in hindering or facilitating gene flow, we 
modified the created raster under two different scenarios. 
The first set (resistance set) was aimed at determining the 
resistance caused by a specific land cover feature with 
respect to the others. We assigned a varying maximum 
resistance (REmax) to a target component, keeping the 
other landscape features to a uniform minimum resistance 
(REmin = 1). The second set of grids (permeability set) was 
built to establish the possible role of a specific landscape 
feature in facilitating the connection between different popu-
lations. Due to the challenges in determining the effective 
resistance posed by each environmental feature to gene flow, 
we employed a optimization procedure encompassing a wide 
range of resistance values (Ortego et al. 2015; Roffler et al. 

2016). We assigned a minimum resistance value to a target 
landscape component and a varying REmax to all remaining 
features. For both set of grids we employed eight maximum 
resistance values (REmax = 5, 10, 50, 100, 500, 1000, 5000 
and 10000) obtaining a total of 96 different surfaces. We 
computed pairwise resistance distances between populations 
for both the bank vole and the wood mouse using the differ-
ent sets of grids. Distances were obtained considering the 
eight-neighbour cell connection scheme in CIRCUITSCAPE 
v4.0 (McRae, Shah, and Mohapatra, 2013) with the sampled 
woodland patches as focal regions. We also computed an 
IBD scenario considering a homogeneous resistance surface 
(all RE = 1) (Castillo et al. 2014; Ortego et al. 2015). We 
then compared the resistance and the FST matrices using 
multiple matrix regression with randomization (MMRR) 
(Wang 2013). We considered a consistent trend of increase 
of R2, at least for 4 levels of resistance values, with P values 
always smaller than 0.05 in single tests, as evidence of the 
impact of the corresponding land cover feature. For each 
landscape variable, the most supported model was identified 
as the one corresponding to the highest supported R2 value. 
In case of plateau, we preferred the model corresponding 
to the onset of the plateau (Castillo et al. 2014). Statistical 
significance of the coefficients was determined using 9999 
permutations with the MMRR function (Wang 2013). All 
statistical analyses were conducted in R.

Results

Genetic diversity

All loci were polymorphic in both species. The average 
expected heterozygosity was very similar in the two differ-
ent sets of markers typed in the two species (0.74 in the bank 
vole and 0.72 in the wood mouse), and the number of alleles 
varied between 2 and 16 in the wood mouse and between 3 
and 11 in the bank vole, respectively. All the genetic varia-
tion statistics are reported in Table 1.

No systematic deviation from linkage equilibrium was 
observed between loci for any population in both species, 
and none of the pairwise tests was significant after Bonfer-
roni correction. Some loci showed evidence of the presence 
of null alleles, but only in some populations. We analyzed 
the effect of these alleles by comparing matrices of pairwise 
FST values computed from the complete data set with values 
corrected for null alleles as estimated by FreeNA. Multilo-
cus global FST values had identical values when calculated 
with and without correcting for null alleles in both species 
(wood mouse: FST = 0.03, with or without correction; bank 
vole: FST = 0.08, with or without correction), with identi-
cal or very similar confidence intervals in the two analyses 
(0.01–0.05 in wood mouse, with and without correction, 

http://www.openstreetmap.org
http://www.diva-gis.org/gdata
http://www.diva-gis.org/gdata
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0.07–0.09 and 0.06–0.08 in bank vole, with and without cor-
rection, respectively). Multilocus pairwise FST values with 
and without correction were also highly correlated (wood 
mouse: r = 0.99; p = 0.001; bank vole: r = 0.99; p = 0.001; 
Mantel test). We decided therefore to use the complete data 
set for all downstream analyses. Pairwise FST values in the 
wood mouse were significant after sequential Bonferroni 
correction only in 7 out of 105 comparisons, all involving 
the PRV population (with FST values never larger than 0.08) 
(Fig. 2; Table S2). On the contrary, the bank vole showed 
a finer geographic structure. Approximately half of the FST 
values were significant, with the highest divergence values 
observed in comparisons including PRV, and, as reported 
above, the average FST was much higher than that estimated 
in the wood mouse (Fig. 2; Table S2).

Genetic structure

The most likely partition implied three genetic groups 
(K = 3) in both species. Here we present individual assign-
ment plots for K equal to 2, 3, and 4 (Fig. 3a, b) to better 
visualize different aspects of the genetic structure, and we 
also report the geographic distribution of the most supported 
clades in both species (Fig. 3c). In the wood mouse (Fig. 3a), 
the isolation of PRV already suggested by the pairwise FST 
matrix was supported at different values of K. With the most 
supported K = 3, or with K = 4, a large fraction of individu-
als and populations (with the exception of PRV) showed 
a mixed ancestry. In the bank vole (Fig. 3b), populations 
appeared more internally homogeneous, with three distinct 

genetic groups prevailing in the northern areas (ALB, BRN, 
FDT, FRR and GST), in the western areas (API, IUG, MCD, 
PRV and YAH), and in a single eastern population (CRC), 
respectively, and the other populations having a more mixed 
and less geographically localized genetic composition. The 
results are robust with increasing burn-in and replicates.

Visualizing deviation from IBD

The spatial visualization of the geographic areas with higher 
or lower gene flow compared to IBD expectations was simi-
lar in the two species (Fig. 4). The main pattern consisted 
of a central area of reduced gene flow, centered around 
PRV, extended only in the bank vole towards the southern 
and the eastern borders of the region. These branches of 
reduced migration clearly produced the higher genetic struc-
ture observed in the bank vole when compared to the wood 
mouse, with the latter having a much higher connectivity in 
most of the areas we considered.

Isolation by resistance (IBR)

Both the wood mouse and the bank vole populations showed 
in the IBR a significant pattern of IBD (Tables S3–S6). 
However, we also found consistently higher association 
between pairwise FST and resistance distance in some mod-
els including land cover features (Fig. 5; Tables S3–S6). 
Highest R2 values in the best models were always smaller in 
the wood mouse, reflecting probably the fact that gene flow 

Fig. 2   Strip chart of pairwise 
FST distances between sampled 
populations. Lines connect 
the same pairwise comparison 
between the wood mouse and 
the bank vole
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is abundant in this species and factors limiting or favouring 
gene flow in this species are more difficult to detect.

In both species, the first set of distances (resistance, RE) 
reached the highest value of R2 when urban areas presented 
intermediate resistance values (RE = 500) with respect 

to the surrounding environmental feature (see Fig. 5a, b; 
Tables S3–S4). Compared to the scenario including only 
IBD, urban areas produced an increase of R2 by approxi-
mately 37 and 69% in the wood mouse and the bank vole, 
respectively. Only hedges in the wood mouse seemed also 
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vertical columns) from K = 2 to K = 4. A wood mouse; b bank vole. 

Maps of the study area with the genetic composition of each popula-
tion for K = 3 in the wood mouse (left) and the bank vole (right)
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genetic differentiation (panel a–c: wood mouse; panel b–d: bank vole) 

in relation to resistance (a, b) and permeability (c, d) distance matri-
ces plotted against resistance values for different landscape features. 
Circles with black outline showed significant P-values



67Conservation Genetics (2023) 24:59–72	

1 3

to produce a small additional fit to the model. The second 
set of resistance values (permeability), designed to highlight 
factors facilitating connectivity between different popula-
tions, supported the role of cultivated areas in both species, 
with a 50% increase of R2 compared to IBD at RE = 1/100 
(see Fig. 5c,d; Tables S5–S6). In addition, woodlands seem 
also to play a role especially in the bank vole, and areas 
comprising and surrounding major roads increased the fit 
of the model only in the wood mouse.

A summary of the major results obtained in the two spe-
cies is in Table 2.

Discussion

In this study we investigated the relationships between 
human-related changes in habitat amount and configuration 
(i.e., habitat structure), habitat use and genetic structure. 
We applied an identical sampling scheme within the same 
fragmented area to two sympatric rodent species, the wood 
mouse and the bank vole. Our main result is that the same 
factors appear to limit (urban areas) and favour (woodland 
and cultivated areas) gene flow in both species despite their 
difference in ecological niche. The genetic structure in the 
same region before human intervention is not known, but it 
is interesting to note that the joint and compensatory effects 
of urban and cultivated areas did not modify the relative 
levels of genetic structure expected in the two species: the 
generalist wood mouse has a population structure much 
more genetically connected than the forest-specialized bank 
vole. More specifically, gene flow favored by cultivated areas 
likely increases the genetic exchanges in the wood mouse 
even above the high level expected in natural conditions, 
now limited only by urban areas. In the bank vole, on the 
other hand, cultivated areas possibly act compensating the 
genetic fragmentation due to the loss of the preferred niche 
(woodland) and the increase of urban areas. Any further 
replacement of woodlands with urban and not cultivated 
areas will clearly reduce this compensatory effect. Overall, 
we conclude that the difference between wood mouse and 

bank vole is still reflected in the difference between their 
current genetic structure, but if woodlands will be further 
replaced by urban settlements and not cultivated areas this 
difference will likely increases.

Genetic diversity

Habitat fragmentation did not produce a detectable loss of 
genetic variation in the two species. Levels of diversity in 
different populations are comparable to those reported for 
other rodent species (Czarnomska et al. 2018; Dominguez 
et al. 2021; Gerlach and Musolf 2000; Martin Cerezo et al. 
2020). When the global genetic divergence between popula-
tions was analyzed, the wood mouse showed much weaker 
population structure than the bank vole. This pattern is 
expected considering that, at a short geographic scale (dis-
tances < 30 km), genetic structure is commonly found only in 
rodents with a specialized ecological niche (Bani et al. 2017; 
Fasanella, et al. 2013; Kozakiewicz et al. 2009; Łopucki 
et al. 2022).

With the exclusion of the population sampled in PRV 
(see below), the wood mouse appears rather homogenous at 
this geographic scale, indicating that gene flow was not pre-
vented by the human-induced fragmentation of their natural 
habitat. This result reflects the enormous capacity of adap-
tation and mobility in this species, which can be found in 
all types of forests and even in cultivated fields during cer-
tain periods of the year (Harris and Woollard 1990; Szacki 
et al. 1993; Tew 1994). Conversely, populations of the bank 
vole sampled in the same patches showed the presence of 
a significant genetic differentiation with a lower degree of 
genetic admixture and higher FST values. Similar studies on 
bank vole confirmed that there is a significant reduction of 
gene flow already at geographical distance of about 8 km 
(Stacy et al. 1997), and that environmental features, such 
as seasonal temperature variations, can contribute in a deci-
sive way in increasing the genetic structure of this species 
(Gȩbczyński and Ratkiewicz 1998).

Fragmentation of the natural environment as a conse-
quence of human activity (e.g., urbanization, agriculture, 

Table 2   Concise summary of the major results obtained in the two species

Species Ecology Overall genetic structure Main factors limit-
ing gene flow

Main factors favouring gene flow

Expected: no/low
Wood mouse Generalist, found in differ-

ent habitats
Observed: FST = 0.03; 

significant deviation from 
IBD

Urban areas Small, if any, effect of cultivated areas 
and areas around roads. Gene flow is 
pervasive

Expected: yes
Bank vole Specialist, prefer forests Observed: FST = 0.08; 

significant deviation from 
IBD

Urban areas Cultivated areas; woodland
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pastures) can reduce the genetic diversity of populations by 
decreasing population size and gene-flow, while increas-
ing genetic drift. Generalist species can be considered as 
“urban adapters” (Blair 2001), since they can occupy novel 
environments/ecosystems given their wider niche breath. 
In white-footed mice (Peromyscus leucopus), urbanization 
increased population differentiation while suffering mini-
mal loss in genetic diversity (Munshi-South and Kharchenko 
2010) and keeping IBR between patches of urban vegetation 
(Munshi-South 2012). Our results also show a similar pat-
tern in which both species retained their genetic diversity 
and showed population structure. While we cannot assess 
the presence of historical population differentiation prior to 
environment fragmentation, we show that different habitat 
disturbance similarly affected sympatric species with differ-
ent ecological specializations.

Spatial patterns of gene flow

Isolation-by-distance was significant for both species indi-
cating that geographic distance is an important factor for iso-
lating the various populations. An additional shared feature 
appears to be the isolation of PRV in all analyses, supporting 
the hypothesis that individuals of both species have difficulty 
reaching this area. This result may be related to the fact that 
urban areas are highly diffused around PRV, and the IBR 
analysis suggested that they act as a barrier for both species.

For the bank vole, we found additional areas of enhanced 
or reduced gene flow, in comparison with the IBD pattern 
in the background. Specifically, three main areas showed 
higher gene flow than expected, corresponding to western, 
eastern and northern patches. Barriers separating them are 
composed of a mix of different environmental features but 
the IBR modelling suggests that urban areas play a major 
role, as observed for other rodent species (Mapelli et al. 
2020; Munshi-South 2012).

Interestingly, our results show that the predicted differ-
ence in genetic structure (less structured generalist vs. more 
structured specialist) was maintained despite habitat altera-
tions. We hypothesize a sort of compensatory effect, simi-
larly acting in both species, between a decrease of gene flow 
in urban areas, while cultivated terrains increased population 
connectivity. Compensatory dynamics in disturbed habitats 
have been observed before in minks (Neovison vison) in 
Scotland and in the western slimy salamander (Plethodon 
albagula) in the USA (Oliver et al. 2016; Peterman et al. 
2014). For salamanders, a compensatory dispersal behavior 
was observed through suboptimal habitats (i.e., high resist-
ance surfaces) (Peterman et al. 2014). For our species, we 
observed higher gene-flow than predicted in some patches, 
which may be due to a compensatory behavior (increased 
gene-flow) through the landscape so previous patterns 
of population connectivity are maintained. This pattern, 

combined with compensatory landscape modifications 
(reduced connectivity in urban areas and increased in culti-
vated terrains) may have contributed to the maintenance of 
previous relative differences in the two investigated species. 
Further genetic monitoring of these populations can eluci-
date if this pattern will be maintained in time.

Our analysis highlighted the importance of woodland 
patches acting as a corridor between different sampled loca-
tions in both studied species, with particular emphasis for 
the bank vole. Urban areas were shown to be the major bar-
riers experienced by gene-flow in the bank vole and wood 
mouse, albeit to a different degree. Moreover, railways and 
roads (never wider than 10 m in this area) cannot be consid-
ered as barriers to the dispersal of these species, consistently 
with previous studies (Gerlach and Musolf 2000; Redeker 
et al. 2006). Indeed, roads appear as a factor that favors gene 
flow in the wood mouse. This may be because, for this spe-
cies, the size of the roads present in the study area should not 
be considered as a barrier and/or that roads, in the environ-
mental matrix, were included in (or surrounded by) a suita-
ble ground. Similarly, cultivated fields do not limit dispersal, 
but may even play a role as corridors (Johnson and Munshi-
South 2017; Miles et al. 2019; Tattersall et al. 2001). The 
only anthropogenic factor that seems to negatively affect the 
dispersal pattern is the presence of urban areas. Clearly, if 
woodlands will be further reduced by urbanization, genetic 
drift due to fragmentation could increase in our two studied 
species.

Spatial scale effects may be of particular importance in 
landscape genetic studies, especially on species having dis-
persal abilities limited. Different spatial scale could have 
revealed other environmental factors, but our sampling 
was spatially designed to test only a few factors related to 
anthropic activities.

Conclusions and implications for conservation

Overall, our results show that despite extensive habitat 
changes due to human activities, levels of genetic variation 
are quite high in both species, and their difference in the 
dispersal abilities is still reflected in the difference of genetic 
structure. The wood mouse, a generalist species with high 
dispersal ability, shows in fact higher genetic connectivity 
than the bank vole, which is a less mobile species closely 
linked to woodland areas. Nevertheless, we found also that 
cultivated fields and urban areas modifies the natural disper-
sion patterns in both species, probably in a way that will, 
in the future, increase the difference between their genetic 
structure. Our study supports the view that patterns of gene 
flow can be similarly affected, even in sympatric species with 
different ecological characteristics, by the same changes of 
land use. Locally, this implies that future monitoring efforts 
should prioritize the bank vole, the species with the highest 
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genetic structure where genetic fragmentation is more likely 
to increase due to urbanization.
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