707 research outputs found

    Alpha radioactivity of the lunar surface at the Surveyor 5, 6, and 7 landing sites

    Get PDF
    Alpha radioactivity of lunar surface at Surveyor 5, 6, and 7 landing site

    Stem cell-derived tissue-engineered constructs for hemilaryngeal reconstruction

    Get PDF
    OBJECTIVES: As an initial step toward our goal of developing a completely tissue-engineered larynx, the aim of this study was to describe and compare three strategies of creating tissue-engineered muscle-polymer constructs for hemilaryngeal reconstruction. METHODS: Cartilage-mimicking polymer was developed from electrospun poly(D,L-lactide-co-ε-caprolactone) (PCL). Primary muscle progenitor cell cultures were derived from syngeneic F344 rat skeletal muscle biopsies. Twenty F344 rats underwent resection of the outer hemilaryngeal cartilage with the underlying laryngeal adductor muscle. The defects were repaired with muscle stem cell-derived muscle-PCL constructs (5 animals), myotube-derived muscle-PCL constructs (5 animals), motor end plate-expressing muscle-PCL constructs (5 animals), or PCL alone (controls; 5 animals). The outcome measures at 1 month included animal survival, muscle thickness, and innervation status as determined by electromyography and immunohistochemistry. RESULTS: All of the animals survived the 1-month implant period and had appropriate weight gain. The group that received motor end plate-expressing muscle-PCL constructs demonstrated the greatest muscle thickness and the strongest innervation, according to electromyographic activity and the percentage of motor end plates that had nerve contact. CONCLUSIONS: Although all of the tissue-engineered constructs provided effective reconstruction, those that expressed motor end plates before implantation yielded muscle that was more strongly innervated and viable. This finding suggests that this novel approach may be useful in the development of a tissue-engineered laryngeal replacement

    Quality of Life with Late-Onset Pompe Disease: Qualitative Interviews and General Public Utility Estimation in the United Kingdom

    Get PDF
    Background: Late-onset Pompe disease (LOPD) is a rare, progressive neuromuscular condition typically characterized by weakness of skeletal muscles, including those involved in respiration and diaphragmatic dysfunction. Individuals with LOPD typically eventually require mobility and/or ventilatory support. / Objectives: This study aimed to develop health state vignettes and estimate health state utility values for LOPD in the United Kingdom. / Methods: Vignettes were developed for 7 health states of LOPD with states defined in terms of mobility and/or ventilatory support. Vignettes were drafted based on patient-reported outcome data from the Phase 3 PROPEL trial (NCT03729362) and supplemented by a literature review. Qualitative interviews with individuals living with LOPD and clinical experts were conducted to explore the health-related quality-of-life (HRQoL) impact of LOPD and to review the draft vignettes. Vignettes were finalized following a second round of interviews with individuals living with LOPD and used in health state valuation exercises with people of the UK population. Participants rated the health states using the EQ-5D-5L, visual analog scale, and time trade-off interviews. / Results: Twelve individuals living with LOPD and 2 clinical experts were interviewed. Following the interviews, 4 new statements were added regarding dependence on others, bladder control problems, balance issues/fear of falling, and frustration. One hundred interviews with a representative UK population sample were completed. Mean time trade-off utilities ranged from 0.754 (SD = 0.31) (no support) to 0.132 (SD = 0.50) (invasive ventilatory and mobility support-dependent). Similarly, EQ- 5D-5L utilities ranged from 0.608 (SD = 0.12) to -0.078 (SD = 0.22). / Discussion: The utilities obtained in the study are consistent with utilities reported in the literature (0.670-0.853 for nonsupport state). The vignette content was based on robust quantitative and qualitative evidence and captured the main HRQoL impacts of LOPD. The general public rated the health states consistently lower with increasing disease progression. There was greater uncertainty around utility estimates for the severe states, suggesting that participants found it harder to rate them. / Conclusion: This study provides utility estimates for LOPD that can be used in economic modeling of treatments for LOPD. Our findings highlight the high disease burden of LOPD and reinforce the societal value of slowing disease progression

    Eikonal phase retrieval: Unleashing the fourth generation sources potential for enhanced propagation based tomography on biological samples

    Full text link
    The evolution of synchrotrons towards higher brilliance beams has increased the possible sample-to-detector propagation distances for which the source confusion circle does not lead to geometrical blurring. This makes it possible to push near-field propagation driven phase contrast enhancement to the limit, revealing low contrast features which would otherwise remain hidden under an excessive noise-to-signal ratio. Until today this possibility was hindered, in most objects of scientific interest, by the simultaneous presence of strong phase gradient regions and low contrast features. The strong gradients, when enhanced with the now possible long propagation distances, induce such strong phase effects that the linearisation assumptions of current state-of-the-art single-distance phase retrieval filters are broken, and the resulting image quality is jeopardized. Our work provides an innovative algorithm which efficiently performs the phase retrieval task over the entire near-field range, producing images of exceptional quality for mixed objects

    Measurement fo A_y for pp Scattering in the Coulomb-Nuclear Interference Region

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Polarization observables in p-d scattering below 30 MeV

    Full text link
    Differential and total breakup cross sections as well as vector and tensor analyzing powers for p-d scattering are studied for energies above the deuteron breakup threshold up to E(lab)=28 MeV. The p-d scattering wave function is expanded in terms of the correlated hyperspherical harmonic basis and the elastic S-matrix is obtained using the Kohn variational principle in its complex form. The effects of the Coulomb interaction, which are expected to be important in this energy range, have been rigorously taken into account. The Argonne AV18 interaction and the Urbana URIX three-nucleon potential have been used to perform a comparison to the available experimental data.Comment: 31 pages, 8 figure

    The SST-1M camera for the Cherenkov Telescope Array

    Get PDF
    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.05894; Full consortium author list at http://cta-observatory.or

    Tensor Polarized Deuteron Capture by the Hydrogen Isotopes

    Get PDF
    This research was sponsored by the National Science Foundatoin Grant NSF PHY 87-1440

    High-resolution MCP-TimePix3 imaging/timing detector for antimatter physics

    Get PDF
    We present a hybrid imaging/timing detector for force sensitive inertial measurements designed for measurements on positronium, the metastable bound state of an electron and a positron, but also suitable for applications involving other low intensity, low energy beams of neutral (antimatter)-atoms, such as antihydrogen. The performance of the prototype detector was evaluated with a tunable low energy positron beam, resulting in a spatial resolution of approximate t

    An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

    Full text link
    The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure
    • …
    corecore