42 research outputs found

    Using SPARK as a Solver for Modelica

    Get PDF
    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Regional brain volume reductions relate to facial dysmorphology and neurocognitive function in fetal alcohol spectrum disorders

    Get PDF
    Individuals with heavy prenatal alcohol exposure can experience significant deficits in cognitive and psychosocial functioning and alterations in brain structure that persist into adulthood. In this report, data from 99 participants collected across three sites (Los Angeles and San Diego, California, and Cape Town, South Africa) were analyzed to examine relationships between brain structure, neurocognitive function, facial morphology, and maternal reports of quantities of alcohol consumption during the first trimester. Across study sites, we found highly significant volume reductions in the FASD group for all of the brain regions evaluated. After correcting for scan location, age, and total brain volume, these differences remained significant in some regions of the basal ganglia and diencephalon. In alcohol-exposed subjects, we found that smaller palpebral fissures were significantly associated with reduced volumes in the diencephalon bilaterally, that greater dysmorphology of the philtrum predicted smaller volumes in basal ganglia and diencephalic structures, and that lower IQ scores were associated with both smaller basal ganglia volumes and greater facial dysmorphology. In subjects from South Africa, we found a significant negative correlation between intracranial volume and total number of drinks per week in the first trimester. These results corroborate previous reports that prenatal alcohol exposure is particularly toxic to basal ganglia and diencephalic structures. We extend previous findings by illustrating relationships between specific measures of facial dysmorphology and the volumes of particular subcortical structures, and for the first time show that continuous measures of maternal alcohol consumption during the first trimester relates to overall brain volume reduction

    Experimental Incubations Elicit Profound Changes in Community Transcription in OMZ Bacterioplankton

    Get PDF
    Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for “challenging” microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia) increased 4–13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations

    Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean

    Get PDF
    As part of an ongoing survey of microbial community gene expression in the ocean, we sequenced and compared ~38 Mbp of community transcriptomes and ~157 Mbp of community genomes from four bacterioplankton samples, along a defined depth profile at Station ALOHA in North Pacific subtropical gyre (NPSG). Taxonomic analysis suggested that the samples were dominated by three taxa: Prochlorales, Consistiales and Cenarchaeales, which comprised 36–69% and 29–63% of the annotated sequences in the four DNA and four cDNA libraries, respectively. The relative abundance of these taxonomic groups was sometimes very different in the DNA and cDNA libraries, suggesting differential relative transcriptional activities per cell. For example, the 125 m sample genomic library was dominated by Pelagibacter (~36% of sequence reads), which contributed fewer sequences to the community transcriptome (~11%). Functional characterization of highly expressed genes suggested taxon-specific contributions to specific biogeochemical processes. Examples included Roseobacter relatives involved in aerobic anoxygenic phototrophy at 75 m, and an unexpected contribution of low abundance Crenarchaea to ammonia oxidation at 125 m. Read recruitment using reference microbial genomes indicated depth-specific partitioning of coexisting microbial populations, highlighted by a transcriptionally active high-light-like Prochlorococcus population in the bottom of the photic zone. Additionally, nutrient-uptake genes dominated Pelagibacter transcripts, with apparent enrichment for certain transporter types (for example, the C4-dicarboxylate transport system) over others (for example, phosphate transporters). In total, the data support the utility of coupled DNA and cDNA analyses for describing taxonomic and functional attributes of microbial communities in their natural habitats.Gordon and Betty Moore FoundationUnited States. Dept. of EnergyNational Science Foundation (U.S.) (Science and Technology Center Award EF0424599

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore