17,338 research outputs found

    Detectability of the First Cosmic Explosions

    Full text link
    We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signaling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲8\lesssim 8 per cent of total allocation time of the James Webb Space Telescope mission can provide us up to ∼9−15\sim 9-15 detectable PISNe per year.Comment: 9 pages, 8 figures. Minor corrections added to match published versio

    Experimental realization of the Yang-Baxter Equation via NMR interferometry

    Get PDF
    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.Comment: 10 pages and 6 figure

    Experimental Determination of Thermal Entanglement in Spin Clusters using Magnetic Susceptibility Measurements

    Full text link
    The present work reports an experimental observation of thermal entanglement in a clusterized spin chain formed in the compound Na2_2Cu5_5Si4_4O14_{14}. The presence of entanglement was investigated through two measured quantities, an Entanglement Witness and the Entanglement of Formation, both derived from the magnetic susceptibility. It was found that pairwise entanglement exists below ∼200 \sim 200 K. Tripartite entanglement was also observed below ∼240 \sim 240 K. A theoretical study of entanglement evolution as a function of applied field and temperature is also presented.Comment: Submited to Phys. Rev.

    Entanglement and Bell's inequality violation above room temperature in metal carboxylates

    Full text link
    In the present work we show that a special family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the cooper carboxylate \{Cu2_2(O2_2CH)4_4\}\{Cu(O2_2CH)2_2(2-methylpyridine)2_2\}, and we have found this to be above room temperature (Te∼630T_e \sim 630 K). Furthermore, the results show that the system remains maximally entangled until close to ∼100\sim 100 K and the Bell's inequality is violated up to nearly room temperature (∼290\sim 290 K)

    Normalization procedure for relaxation studies in NMR quantum information processing

    Full text link
    NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a "loss of purity" until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.Comment: 9 pages, 5 figures, to appear in QI

    Efeito de antioxidantes na conservação do coco verde descascado.

    Get PDF
    O objetivo do presente estudo foi estudar o efeito de agentes sulfitantes e ácidos orgânicos na conservação e manutenção da aparência do coco verde descascado, envolvido em filme de polietileno de baixa densidade e mantido sob refrigeração

    Aspectos importantes para a obtenção de leite de cabra com qualidade.

    Get PDF
    bitstream/item/110938/1/DOC14001.pd
    • …
    corecore