39 research outputs found

    Contribution of microscopy for understanding the mechanism of action against trypanosomatids

    Get PDF
    Transmission electron microscopy (TEM) has proved to be a useful tool to study the ultrastructural alterations and the target organelles of new antitrypanosomatid drugs. Thus, it has been observed that sesquiterpene lactones induce diverse ultrastructural alterations in both T. cruzi and Leishmania spp., such as cytoplasmic vacuolization, appearance of multilamellar structures, condensation of nuclear DNA, and, in some cases, an important accumulation of lipid vacuoles. This accumulation could be related to apoptotic events. Some of the sesquiterpene lactones (e.g., psilostachyin) have also been demonstrated to cause an intense mitochondrial swelling accompanied by a visible kinetoplast deformation as well as the appearance of multivesicular bodies. This mitochondrial swelling could be related to the generation of oxidative stress and associated to alterations in the ergosterol metabolism. The appearance of multilamellar structures and multiple kinetoplasts and flagella induced by the sesquiterpene lactone psilostachyin C indicates that this compound would act at the parasite cell cycle level, in an intermediate stage between kinetoplast segregation and nuclear division. In turn, the diterpene lactone icetexane has proved to induce the external membrane budding on T. cruzi together with an apparent disorganization of the pericellar cytoskeleton. Thus, ultrastructural TEM studies allow elucidating the possible mechanisms and the subsequent identification of molecular targets for the action of natural compounds on trypanosomatids.Fil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Tonn, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    A MAP6-Related Protein Is Present in Protozoa and Is Involved in Flagellum Motility

    Get PDF
    In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function

    A short review on the morphology of Trypanosoma cruzi: from 1909 to 1999

    No full text
    The morphology of Trypanosoma cruzi is reviewed since the initial description of Giemsa-stained preparations by Carlos Chagas until the most recent micrographs obtained with freeze-fracture techniques. Special emphasis is given to structures such as the cell surface, the flagellum, the kinetoplast, the reservosomes and the endocytic pathway, and the acidocalcisomes

    Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi

    No full text
    BACKGROUND: Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions
    corecore