95 research outputs found

    An Assessment Of The Accuracy Of Kangaroo Surveys Using Fixed-Wing Aircraft

    Get PDF
    The use of line-transect methodology, on foot or from a helicopter, is likely to return the most repeatable, least biased estimates of kangaroo density. However, the associated costs make both methods impractical for broad-scale surveys. For these, a fixed-wing aircraft remains the most cost-effective platform. Limitations of the standard fixed-wing method (200-m strip transacts) are well known, but it continues to be used because it provides an index of trends, because there are now long runs of data (almost 20 years in some cases) collected in this standard form and an alternative method is lacking. In this study, four variations of fixed wing surveys of kangaroos were investigated: two line-transect methods (involving different scanning techniques), the standard 200-m strip transect and a 100-m strip transect. Surveys using these methods were compared with helicopter line-transect surveys along the same flight lines in three areas (5000-7500 km2) in western Queensland. Both fixed-wing line-transect methods failed to produce consistently accurate estimates of density for all three species surveyed: red kangaroos (Macropus rufus), eastern grey kangaroos (M. giganteus) and common wallaroos (M. robustus). While generally more accurate than the uncorrected strip-transect counts, they were no less variable. However, the strip-transect counts still need to be corrected for bias for which this study offers revised estimates of correction factors for eastern grey kangaroos (3.7-10.2) and common wallaroos (3.8-4.1), and estimates for red kangaroos (1.7-2.7) that support currently used values. An attractive alternative is to survey in 100-m strip transacts, which offer improved visibility (correction factors of 1.0-1.8 for red kangaroos, 2.1-3.6 for eastern grey kangaroos and 1.7-2.1 for common wallaroos) and are therefore likely to be more accurate and repeatable. However, these advantages need to be assessed in relation to continuing long runs of data using the standard 200-m strip transect. Correction factors for wallaroos are conservative as helicopter-based density estimates are known to be underestimates. Further work is needed to assess the generality of correction factors, both spatially and temporally

    Time-lapse imagery and volunteer classifications from the Zooniverse Penguin Watch project

    Get PDF
    Automated time-lapse cameras can facilitate reliable and consistent monitoring of wild animal populations. In this report, data from 73,802 images taken by 15 different Penguin Watch cameras are presented, capturing the dynamics of penguin (Spheniscidae; Pygoscelis spp.) breeding colonies across the Antarctic Peninsula, South Shetland Islands and South Georgia (03/2012 to 01/2014). Citizen science provides a means by which large and otherwise intractable photographic data sets can be processed, and here we describe the methodology associated with the Zooniverse project Penguin Watch, and provide validation of the method. We present anonymised volunteer classifications for the 73,802 images, alongside the associated metadata (including date/time and temperature information). In addition to the benefits for ecological monitoring, such as easy detection of animal attendance patterns, this type of annotated time-lapse imagery can be employed as a training tool for machine learning algorithms to automate data extraction, and we encourage the use of this data set for computer vision development

    Pre-surgical radiologic identification of peri-prosthetic osteolytic lesions around TKRs: a pre-clinical investigation of diagnostic accuracy

    Get PDF
    Background: Emerging longitudinal data appear to demonstrate an alarming trend towards an increasing prevalence of osteolysis-induced mechanical failure, following total knee replacement (TKR). Even with high-quality multi-plane X-rays, accurate pre-surgical evaluation of osteolytic lesions is often difficult. This is likely to have an impact on surgical management and provides reasonable indication for the development of a model allowing more reliable lesion assessment. The aim of this study, using a simulated cadaver model, was to explore the accuracy of rapid spiral computed tomography (CT) examination in the non-invasive evaluation of peri-prosthetic osteolytic lesions, secondary to TKR, and to compare this to conventional X-ray standards. Methods: A series of nine volume-occupying defects, simulating osteolytic lesions, were introduced into three human cadaveric knees, adjacent to the TKR implant components. With implants in situ, each knee was imaged using a two-stage conventional plain X-ray series and rapid-acquisition spiral CT. A beam-hardening artefact removal algorithm was employed to improve CT image quality. After random image sorting, 12 radiologists were independently shown the series of plain X-ray images and asked to note the presence, anatomic location and 'size' of osteolytic lesions observed. The same process was repeated separately for review of the CT images. The corresponding X-ray and CT responses were directly compared to elicit any difference in the ability to demonstrate the presence and size of osteolytic lesions. Results: Access to CT images significantly improved the accuracy of recognition of peri-prosthetic osteolytic lesions when compared to AP and lateral projections alone (P = 0.008) and with the addition of bi-planar oblique X-rays (P = 0.03). No advantage was obtained in accuracy of identification of such lesions through the introduction of the oblique images when compared with the AP and lateral projections alone (P = 0.13) Conclusion: The findings of this study suggest that peri-prosthetic osteolytic lesions can be reliably described non-invasively using a simple, rapid-acquisition CT-based imaging approach. The low sensitivity of conventional X-ray, even with provision of supplementary bi-planar 45° oblique views, suggests a limited role for use in situ for TKR implant screening where peri-prosthetic osteolytic lesions are clinically suspected. In contrast, the accuracy of CT evaluation, linked to its procedural ease and widespread availability, may provide a more accurate way of evaluating osteolysis around TKRs, at routine orthopaedic follow up. These findings have direct clinical relevance, as accurate early recognition and classification of such lesions influences the timing and aggressiveness of surgical and non-operative management strategies, and also the nature and appropriateness of planned implant revision or joint-salvaging osteotomy procedures.Timothy P. Kurmis, Andrew P. Kurmis, David G. Campbell and John P. Slavotine

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment

    Get PDF

    Oak canopy arthropod communities: which factors shape its structure?

    Full text link
    corecore