3,604 research outputs found

    Phase Transitions with Discrete Symmetry Breaking in Antiferromagnetic Heisenberg Models on a Triangular Lattice

    Full text link
    We study phase transition behavior of the Heisenberg model on a distorted triangular lattice with competing interactions. The ground-state phase diagram indicates that underlying symmetry can be changed by tuning parameters. We focus on two cases in which a phase transition with discrete symmetry breaking occurs. The first is that the order parameter space is SO(3)×C3\times C_3. In this case, a first-order phase transition, with threefold symmetry breaking, occurs. The second has the order parameter space SO(3)×Z2\times Z_2. In this case, a second-order phase transition occurs with twofold symmetry breaking. To investigate finite-temperature properties of these phase transitions from a microscopic viewpoint, we introduce a method to make the connection between continuous frustrated spin systems and the Potts model with invisible states.Comment: 5 pages, 2 figure

    Monte Carlo Study of the Anisotropic Heisenberg Antiferromagnet on the Triangular Lattice

    Full text link
    We report a Monte Carlo study of the classical antiferromagnetic Heisenberg model with easy axis anisotropy on the triangular lattice. Both the free energy cost for long wavelength spin waves as well as for the formation of free vortices are obtained from the spin stiffness and vorticity modulus respectively. Evidence for two distinct Kosterlitz-Thouless types of defect-mediated phase transitions at finite temperatures is presented.Comment: 8 pages, 10 figure

    Heisenberg frustrated magnets: a nonperturbative approach

    Full text link
    Frustrated magnets are a notorious example where the usual perturbative methods are in conflict. Using a nonperturbative Wilson-like approach, we get a coherent picture of the physics of Heisenberg frustrated magnets everywhere between d=2d=2 and d=4d=4. We recover all known perturbative results in a single framework and find the transition to be weakly first order in d=3d=3. We compute effective exponents in good agreement with numerical and experimental data.Comment: 5 pages, Revtex, technical details available at http://www.lpthe.jussieu.fr/~tissie

    Off Equilibrium Study of the Fluctuation-Dissipation Relation in the Easy-Axis Heisenberg Antiferromagnet on the Kagome Lattice

    Full text link
    Violation of the fluctuation-dissipation theorem (FDT) in a frustrated Heisenberg model on the Kagome lattice is investigated using Monte Carlo simulations. The model exhibits glassy behaviour at low temperatures accompanied by very slow dynamics. Both the spin-spin autocorrelation function and the response to an external magnetic field are studied. Clear evidence of a constant value of the fluctuation dissipation ratio and long range memory effects are observed for the first time in this model. The breakdown of the FDT in the glassy phase follows the predictions of the mean field theory for spin glasses with one-step replica symmetry breaking.Comment: 4 pages, 4 figure

    From one cell to the whole froth: a dynamical map

    Full text link
    We investigate two and three-dimensional shell-structured-inflatable froths, which can be constructed by a recursion procedure adding successive layers of cells around a germ cell. We prove that any froth can be reduced into a system of concentric shells. There is only a restricted set of local configurations for which the recursive inflation transformation is not applicable. These configurations are inclusions between successive layers and can be treated as vertices and edges decorations of a shell-structure-inflatable skeleton. The recursion procedure is described by a logistic map, which provides a natural classification into Euclidean, hyperbolic and elliptic froths. Froths tiling manifolds with different curvature can be classified simply by distinguishing between those with a bounded or unbounded number of elements per shell, without any a-priori knowledge on their curvature. A new result, associated with maximal orientational entropy, is obtained on topological properties of natural cellular systems. The topological characteristics of all experimentally known tetrahedrally close-packed structures are retrieved.Comment: 20 Pages Tex, 11 Postscript figures, 1 Postscript tabl

    Ising Spin Glass in a Transverse Magnetic Field

    Full text link
    We study the three-dimensional quantum Ising spin glass in a transverse magnetic field following the evolution of the bond probability distribution under Renormalisation Group transformations. The phase diagram (critical temperature TcT_c {\em vs} transverse field Γ\Gamma) we obtain shows a finite slope near T=0T=0, in contrast with the infinite slope for the pure case. Our results compare very well with the experimental data recently obtained for the dipolar Ising spin glass LiHo0.167_{0.167}Y0.833_{0.833}F4_4, in a transverse field. This indicates that this system is more apropriately described by a model with short range interactions than by an equivalent Sherrington-Kirkpatrick model in a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9

    Men, masculinities and young people: north–south dialogues

    Get PDF
    Dialoguing across national borders and specifically global North-South centres and margins has increasingly been viewed as a way to enhance critical and feminist studies and engagement with men and masculinities. This article draws on narratives levels, both in interpersonal and intergroup relations, as well as in public representation of collaborative work. generated by a group of researchers in South Africa and Finland who have been engaged in a transnational research project that included a strong focus on young men, masculinities and gender and sexual justice. The piece provides an account of the nuanced and complex experiences and dynamics involved in transnational research collaboration, particularly within the framework on historical and continued inequalities between the global North and South. While obvious benefits are raised, this experience also foregrounds a range of challenges and constraints involved in transnational research collaboration within this field and possibly many others. Key learnings gleaned from this analysis of reported experiences and thoughts include the importance of careful, considered and critical reflexivity at all moments and at al

    A Measurement of the Electric Form Factor of the Neutron through d(e,en)p\vec{d}(\vec{e},e'n)p at Q2=0.5Q^2 = 0.5 (GeV/c)2^2

    Full text link
    We report the first measurement of the neutron electric form factor GEnG_E^n via d(e,en)p\vec{d}(\vec{e},e'n)p using a solid polarized target. GEnG_E^n was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, 15^{15}ND3_3. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find GEn=0.04632±0.00616(stat.)±0.00341(syst.)G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.) at Q2=0.495Q^2 = 0.495 (GeV/c)2^2.Comment: Latex2e 5 pages, 3 figure

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    Short-Range Ising Spin Glass: Multifractal Properties

    Full text link
    The multifractal properties of the Edwards-Anderson order parameter of the short-range Ising spin glass model on d=3 diamond hierarchical lattices is studied via an exact recursion procedure. The profiles of the local order parameter are calculated and analysed within a range of temperatures close to the critical point with four symmetric distributions of the coupling constants (Gaussian, Bimodal, Uniform and Exponential). Unlike the pure case, the multifractal analysis of these profiles reveals that a large spectrum of the α\alpha -H\"older exponent is required to describe the singularities of the measure defined by the normalized local order parameter, at and below the critical point. Minor changes in these spectra are observed for distinct initial distributions of coupling constants, suggesting an universal spectra behavior. For temperatures slightly above T_{c}, a dramatic change in the F(α)F(\alpha) function is found, signalizing the transition.Comment: 8 pages, LaTex, PostScript-figures included but also available upon request. To be published in Physical Review E (01/March 97
    corecore