17,416 research outputs found

    Monochromatic Clique Decompositions of Graphs

    Get PDF
    Let GG be a graph whose edges are coloured with kk colours, and H=(H1,…,Hk)\mathcal H=(H_1,\dots , H_k) be a kk-tuple of graphs. A monochromatic H\mathcal H-decomposition of GG is a partition of the edge set of GG such that each part is either a single edge or forms a monochromatic copy of HiH_i in colour ii, for some 1≤i≤k1\le i\le k. Let ϕk(n,H)\phi_{k}(n,\mathcal H) be the smallest number ϕ\phi, such that, for every order-nn graph and every kk-edge-colouring, there is a monochromatic H\mathcal H-decomposition with at most ϕ\phi elements. Extending the previous results of Liu and Sousa ["Monochromatic KrK_r-decompositions of graphs", Journal of Graph Theory}, 76:89--100, 2014], we solve this problem when each graph in H\mathcal H is a clique and n≥n0(H)n\ge n_0(\mathcal H) is sufficiently large.Comment: 14 pages; to appear in J Graph Theor

    Preliminary results of aerial infrared surveys at Pisgah Crater, California

    Get PDF
    In-flight tests of airborne infrared scanners, and comparison with field reflectance dat

    A dynamic two phase flow model for a pilot scale sodium borohydride hydrogen generation reactor

    Get PDF
    A two-dimensional, non-isothermal, and dynamic model was developed to describe a sodium borohydride/hydrogen re-actor for stationary use. All relevant transport phenomena were treated in detail and the kinetic model developed previ-ously by the authors was introduced into the algorithm. In this paper the reactive solution was modeled as a two phase flow; with this approach the impact of the hydrogen production on the solution stirring could be observed and quantified. Results showed that not all ruthenium deposited on the nickel foam was used efficiently as catalyst. In fact, most of the reaction occurred in the surface of the catalyst foam and around 70% of the deposited catalyst was not used. It was also demonstrated the importance of the two phase flow approach for a correct simulation of the solution stirring and heat transfer

    Dielectric mismatch and shallow donor impurities in GaN/HfO2 quantum wells

    Full text link
    In this work we investigate electron-impurity binding energy in GaN/HfO2_2 quantum wells. The calculation considers simultaneously all energy contributions caused by the dielectric mismatch: (i) image self-energy (i.e., interaction between electron and its image charge), (ii) the direct Coulomb interaction between the electron-impurity and (iii) the interactions among electron and impurity image charges. The theoretical model account for the solution of the time-dependent Schr\"odinger equation and the results shows how the magnitude of the electron-impurity binding energy depends on the position of impurity in the well-barrier system. The role of the large dielectric constant in the barrier region is exposed with the comparison of the results for GaN/HfO2_2 with those of a more typical GaN/AlN system, for two different confinement regimes: narrow and wide quantum wells.Comment: 6 Pages, 7 figure

    Pauli-Lubanski scalar in the Polygon Approach to 2+1-Dimensional Gravity

    Full text link
    In this paper we derive an expression for the conserved Pauli-Lubanski scalar in 't Hooft's polygon approach to 2+1-dimensional gravity coupled to point particles. We find that it is represented by an extra spatial shift Δ\Delta in addition to the usual identification rule (being a rotation over the cut). For two particles this invariant is expressed in terms of 't Hooft's phase-space variables and we check its classical limit.Comment: Some errors are corrected and a new introduction and discussion are added. 6 pages Latex, 4 eps-figure

    Self-Similarity of Friction Laws

    Full text link
    The change of the friction law from a mesoscopic level to a macroscopic level is studied in the spring-block models introduced by Burridge-Knopoff. We find that the Coulomb law is always scale invariant. Other proposed scaling laws are only invariant under certain conditions.}Comment: Plain TEX. Figures not include

    Three dimensional model of a high temperature PEMFC using PBI doped phosphoric acid membranes. Study of the flow field effect on performance

    Get PDF
    A three-dimensional isothermal model of a high temperature polymer membrane fuel cell equipped with polybenzimidazole (PBI) membrane is described. All major transport phenomena were taken into account except the species cross-over thought the membrane. The cathode catalyst layer was treated as spherical catalyst agglomerates with porous inter-agglomerate spaces. The inter-agglomerate spaces were filled with a mixture of electrolyte (hot phosphoric acid) and polytetrafluoroethylene (PTFE). This approach proved to be an essential requirement for accurate simulation. In this particular paper the influence of different flow field designs and dimensions on performance was intensely study. Traditional configurations were tested (straight, serpentine, pin-in and interdigitated), and a new designs were proposed. With these new designs we tried to maximize performance by providing homogeneous reactants distribution over the active area keeping low pressure drop and relatively high velocity. The dimension and position of the inlet and outlet manifolds were also analysed. From the obtained results was observed a massive influence of the manifolds position and dimension on performance. This fact leaded to an optimization of the manifolds which can give important guidelines for future bipolar plates production

    The walkability of Alvalade neighbourhood for young people: An agent-based model of daily commutes to school

    Get PDF
    The Alvalade neighbourhood in Lisbon, Portugal, was built in the mid-XX century as low-cost housing for workers, but it has become inhabited by the middle and upper classes. The neighbourhood is home to a large population of young people, including children and teenagers who attend the schools located in the area. We present an agent- based model which aims to investigate the walkability of the neighbourhood for these young people, focusing on the mobility patterns of children and teenagers as they navigate their daily routines of going to school. We simulate the pedestrian movement of these young people, considering factors such as the availability of sidewalks, crosswalks, distance to schools, and the presence of other amenities. Our research reveals the mobility patterns emerging in this area and compares them across the different schools in the area. These results inform both urban policies and interventions that promote safe and accessible routes to school.info:eu-repo/semantics/publishedVersio
    • …
    corecore