research

Three dimensional model of a high temperature PEMFC using PBI doped phosphoric acid membranes. Study of the flow field effect on performance

Abstract

A three-dimensional isothermal model of a high temperature polymer membrane fuel cell equipped with polybenzimidazole (PBI) membrane is described. All major transport phenomena were taken into account except the species cross-over thought the membrane. The cathode catalyst layer was treated as spherical catalyst agglomerates with porous inter-agglomerate spaces. The inter-agglomerate spaces were filled with a mixture of electrolyte (hot phosphoric acid) and polytetrafluoroethylene (PTFE). This approach proved to be an essential requirement for accurate simulation. In this particular paper the influence of different flow field designs and dimensions on performance was intensely study. Traditional configurations were tested (straight, serpentine, pin-in and interdigitated), and a new designs were proposed. With these new designs we tried to maximize performance by providing homogeneous reactants distribution over the active area keeping low pressure drop and relatively high velocity. The dimension and position of the inlet and outlet manifolds were also analysed. From the obtained results was observed a massive influence of the manifolds position and dimension on performance. This fact leaded to an optimization of the manifolds which can give important guidelines for future bipolar plates production

    Similar works