92 research outputs found

    Interferometric inverse synthetic aperture radar experiment using an interferometric linear frequency modulated continuous wave millimetre-wave radar

    Get PDF
    D. Felguera-Martín,1 J.-T. González-Partida,1 P. Almorox-González,1 M. Burgos-García,1 and B.-P. Dorta-Naranjo2 1Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Grupo de Microondas y Radar. Departamento de Señales, Sistemas y Radiocomunicaciones, Madrid, Spain 2Universidad de Las Palmas de Gran Canaria, Departamento de Señales y Comunicaciones, Las Palmas de Gran Canaria, Spain An interferometric linear frequency modulated continuous wave (LFMCW) millimetre-wave radar is presented, along with the results of an experiment conducted to study the feasibility of using it in a future millimetre-wave interferometric inverse synthetic aperture radar (InISAR) system. First, a description of the radar is given. Then, the signal processing chain is described, with special attention to the phase unwrapping technique. The interferometric phase is obtained by unwrapping the prominent target's phase in each antenna using a sliding frame processing technique. Cell migration issues in this method are also addressed. Simulations were carried out to illustrate and assess the processing chain and to show the effects of multipath echoes on the height measurement. In the real experiment, the range, speed and height of a moving target were tracked over consecutive inverse synthetic aperture radar (ISAR) image frames, verifying the performance of the whole system

    SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization

    No full text

    Algorithms and Error Analysis for Diffraction Tomography Using the Born and Rytov Approximations

    No full text
    corecore