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RFI suppression in SAR based on filtering
interpretation of SSA and fast implementation
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Abstract

Synthetic aperture radar (SAR) has proven to be a powerful remote sensing instrument for underground and
obscured object detection. However, SAR echoes are often contaminated by radio frequency interferences (RFI)
from multiple broadcasting stations. Essentially, RFI suppression problem is one-dimensional stationary time series
denoising problem. This article proposed a novel RFI suppression algorithm based on singular spectral analysis
(SSA) from a linear invariant systems perspective. It can be seen that SSA algorithm has an equivalence relation
with finite impulse response (FIR) filter banks. Besides, this article first introduce two approximated methods which
can remarkably speed up spectral decomposition–Nyström method and Column-Sampling approximation–to
obtain the coefficients of above SSA-FIR-filter. Simulation results and imaging results of measured data have proved
the efficiency and validity of this algorithm.

Keywords: synthetic aperture radar, radio frequency interference suppression, singular spectral analysis, finite
impulse response filter, Nyström method, Column-Sampling approximation.

1. Introduction
Synthetic aperture radar (SAR) operates in the P-, L-, C-,
and X-bands to image the Earth’s surface along the car-
rier platform’s flight path while the antenna is oriented
perpendicular to the flight direction in the downward-
slanted direction. However, the above frequency bands
are not reserved exclusively for SAR applications. They
are also occupied by other services like radio and televi-
sion stations, as well as telecommunication purposes.
When the carrier platform passes over these broadcasting
stations, the receiver of SAR picks up the signals from
these stations also. These interfere signals are called
radio frequency interferences (RFIs) which will overlay
the SAR information and become visible in the SAR
image [1]. Sometimes, they will make the SAR receiver
saturated because their power goes beyond the receiver’s
dynamic load.
Therefore, it remains to be a hot research topic on

RFI suppression for decades. The early methods are
mainly based on coherent estimation and subtraction of
RFIs [2]. Their performances heavily rely on the compli-
cated data models and parameter estimation accuracy so

that they are awkward and not robust. Other commonly
used methods are notch filtering [3]. Their main draw-
back is degradation in the range domain of SAR imagery
when multiple RFI sources are present. Then, more
attractive methods are based on least mean square
(LMS) adaptive filters [4]. However, they have a tradeoff
between length of the filter and numerical sensitivity of
adaptation. Afterwards, some researchers proposed sub-
space filters for estimating RFI signals with Gram-
Schmidt orthogonalization procedure or Eigenvalue
Decomposition (ED) [5,6]. The performances of these
methods are robust but the large computational burden
limits their application in practice.
This article has proposed a novel RFI suppression algo-

rithm based on subspace projection by taking use of singu-
lar spectral analysis (SSA). The roles of signal and noise in
the proposed algorithm are exchanged just as in the LMS
mechanism. Each SAR echo received during pulse repeti-
tion time can be considered as a one-dimensional time
series. Thus, RFI suppression problem is the one-dimen-
sional stationary time series denoising problem in nature,
and SSA algorithm is a prevalent algorithm when cluster-
ing subspace models are applied to time series datasets [7].
The aim of SSA is to obtain RFI clustering and ‘wideband
noise’ clustering. It can be considered as three steps:
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‘embedding’ step, ‘spectral decomposition’ step, and ‘re-
embedding’ step. Interestingly, these steps can be achieved
through an analysis-synthesis-joint finite impulse response
(FIR) filters group [8-10]. Based on this equivalence rela-
tionship, a special kind of filtering mechanism for RFI sup-
pression can be established.
However, on account of large amount, abundant infor-

mation, the burden of SAR imaging system for data sto-
rage and processing is increased. For this reason, this
article introduces two random sampling techniques,
Nyström method [11-15] and Column-Sampling approx-
imation [14-17], to provide powerful tools to approxi-
mate the coefficients of the proposed SSA-FIR filter
banks. These techniques are recently used in the
machine learning community [13] and analyzed in the
theoretical Computer Science community [13,16,17].
Their reconstruction error bound analysis and applica-
tion guidelines are elaborated in [14-17]. For the first
time, we combined them with SAR signal processing
and RFI suppression.
The remainder of this article is organized as follows. In

Section 2, the signal model of RFI sources contaminating
the SAR signals is expressed in formulas, followed by the
implementation details of FIR filtering method that is
equivalent to SSA algorithm, and then in Section 3, we
give two quick approaches, the Nyström method and the
Column-Sampling approximation, for the filtering method
in Section 2. In Section 4, the proposed algorithm is tested
by means of using numerical simulations and P-band SAR
real data, and comparison and analysis of these results are
given. Finally, Section 5 comes up with the conclusions.

2. Signal model and filtering interpretation of
SSA
Assuming the time ta it is observed that received SAR
signal s(tr, ta) is to be measured at the discrete fast-time
sample tr, tr = 0,1,...,M-1 and ta is the discrete aperture
(slow-time) samples, ta = 0,1,...,N-1. It is SAR echo sig-
nal secho(tr, ta) contaminated by RFI signal sRFI(tr, ta)
and system noise sNoise(tr, ta):

s(tr , ta) = secho(tr, ta) + sRFI(tr , ta) + sNoise(tr , ta) (1)

Generally, for distributed targets (e.g., in real scenario)
secho(tr, ta) resembles Additive White Gaussian Noise
(AWGN), and sNoise(tr, ta) generated by system is
AWGN, too. RFI signal has comparatively narrow band,
and can be considered but not limit to complex expo-
nential signal. Previous researches [1-6] pointed that the
power of RFI signals is tens of dBs greater than the
power of the SAR echoes. So, secho(tr, ta) and sNoise(tr,
ta) can be together considered as wideband background
noise which is independent from the RFI source,
denoted as sWB(tr, ta) = secho(tr, ta)+sNoise(tr, ta).

For a given ta, s(tr, ta) is a one-dimensional time series,
denoted as s = (s[1], s[2],...,s[M]) for simplicity. Normally,
we remove mean value from the original data vector
ahead. According to the first step of SSA algorithm [7], an
embedding step, we choose a window length L and an
embedded dimension K to construct K = M-L+1 lagged
vectors:

sk =
(
s
[
k − 1 + L − 1

]
, . . . , s

[
k − 1

])T = sRFI,k + sWB,k, k = 1, ...,K, (2)

where superscript ‘T’ denotes transpose. Then, an L ×
K matrix with Toeplitz structure is composed:

S = (s1, s2, . . . , sk) =

⎛
⎜⎜⎜⎝
s [L − 1] s [L] · · · s [M − 1]
s [L − 2] s [L − 1] · · · s [M − 2]

...
...

. . .
...

s [0] s [1] · · · s [M − L]

⎞
⎟⎟⎟⎠ , k = 1, ...,K, (3)

Note that G = SSH is an L × L symmetric and positive
semi-definite (SPSD) matrix, where superscript ‘H’
denotes conjugate transpose. We may express it in spec-
tral decomposition form as G = UΛUH, where U is an
orthogonal matrix whose columns are the eigenvectors
u1,...,uL of G, and Λ = diag(l1,l2,....,lL) is a diagonal
matrix whose entries on diagonal are ordered eigenvalues
l1 ≥ l2 ≥...,≥lL of G. Based on Equation (1), we suppose
that the r leading eigenpairs {(λi,ui)}r1 which should be
separated from the other L-r eigenpairs to reconstruct a
‘clean’ data matrix without ‘noise’ are related to RFI sub-
space. We know that if the signal and noise subspace can
be sufficiently separated, it implies that the noise has to
be white and zero-mean. In the preceding paragraph, we
have expatiated on the precondition of the proposed
algorithm: radar echoes from distributed targets have
White Gaussian Noise characters, and the mean value
has been removed from the original record ahead. Then,
the reconstructed RFI clustering could be obtained via

S̃RFI = UPUHS = U
(
PUHS

)
= UQ (4)

where P is a diagonal selected matrix, with the ith
diagonal entry satisfies Pii = 1 if the ith row of Q =
PUHS is selected whereas Pii = 0 it will be discard.
Thus, we select the first r = rank(G) corresponding to
the dimension of RFI subspace entries, {Pii = 1}ri=1 .
Note that, there may be varying number of RFI sources

in the region where carrier platform transits. Namely, the
dimension r of the RFI subspace is mutative in the aper-
ture synthetic duration and needs to be ascertained. His-
torically, multiple methods are proposed for how to
select the rank r, such as AIC-type (AIC, Akaike Informa-
tion Criterion and MDL, Minimum Description Length
[18]) which are based on information theoretic criteria or
ESPRIT-type (ESTER, ESTimation Error [19] and
SAMOS, Subspace-based Automatic Model Order Selec-
tion [20]) based on the shift invariance equation. Besides
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that, the method we adopt here is based on the eigenva-
lue distribution of the approximated sample covariance
matrix [21]. It uses several results from random matrix
theory which provides a set of remarkable tools for rank
estimation and just has progressed substantially over the
last 10 years. In a word, this method takes use of the the-
ories developed in [22-24], and consequently determines
a specified eigenvalue threshold. Here, we just give the
rank estimation formula:

r = rank (G) = argmin
j

{
λj ≤ σ 2

j

(
μ

(
L,K − j

)
+ τ (ς) • δ

(
L,K − j

))}−1 1 ≤ j ≤ min (L,K) , (5)

where σ 2
j is the noise level whose calculation proce-

dure is also in [21], τ(ς) is the corresponding value com-
puted by inversion of the Tracy-Widom distribution
[21,23], ς indicates that the eigenvalue significance level
is normally a small positive number, in our raw data
experiment, we set ς = 0.05. Besides, μ(L, K-j) and δ(L,
K-j) are center and scaling quantities, respectively:

μ
(
L,K − j

)
=

(√
L +

√
K − j

)2
(6)

δ
(
L,K − j

)
=

(√
L +

√
K − j

) (
1√
L
+

1√
K − j

)1
3 (7)

Now, recall Equation (4), the ith row of Q is denoted

as qi = PiiuH
i S , i = 1,...,L, then (4) can be written as

S̃RFI = u1
(
P11uH

1 S
)
+u2

(
P2uH

2 S
)
+· · ·+ur

(
PrruH

r S
)
= u1q1+u2q2+· · ·+urqr =

r∑
i=1

S̃RFI,i (8)

Interestingly, the 1 × L row vector qi = PiiuH
i S can be

considered as a filtered version of the original data
sequence [8,9]. Each sample of qi can be written as fol-
lows

qi [n] = Pii
L∑
j=1

uj,is
[
n − j + 1

]
, (L − 1) ≤ n < M, (9)

There are K = M-(L-1) samples drawn from the time
series qi[n] in qi. Equation (6) is the convolution sum of
the eigenvector ui and the (n - K + 2)th original lagged
data vector. Thus, the entries of eigenvector ui corre-
spond to the coefficients of an FIR filter which is namely
the analysis filter. Introducing z-transform Z (•) , we
can get the transfer function Hi(z) of the analysis filter

Hi (z) =
Qi (z)
S (z)

= Pii
L∑
j=1

uj,iz−(j−1) = Pii
(
u1,i + u2,iz + · · · + uK,iz−(L−1)

)
(10)

where Qi (z) = Z
(
qi [n]

)
, S (z) z−(j−1) = Z

(
s
[
n − j + 1

])
,

and z is a complex value.

In the sequel we will perform re-embedding step on
the reconstructed RFI-embedded matrix S̃RFI to recover

it in a one-dimensional time series again. However, S̃RFI
has not kept Toeplitz structure anymore. To substitute
all entries on each diagonal with their respective average
value, we obtain a new Toeplitz matrix. All of the aver-
aging values comprise the final pure RFI signals [7]. We
give an example of S̃RFI,i = uiqi , the procedure can be

described as follows.

S̃RFI,i = uiqi =

⎛
⎜⎜⎜⎝
u1,iqi [L − 1] u1,iqi [L] · · · u1,iqi [M − 1]
u2,iqi [L − 1] u2,iqi [L] · · · u2,iqi [M − 1]

...
...

. . .
...

ur,iqi [L − 1] ur,iqi [L] · · · ur,iqi [M − 1]

⎞
⎟⎟⎟⎠ (11)

The diagonal averaging process of this rank one
matrix is given by

s̃i [n] =
1
Nd

b∑
j=a

uj,iqi
[
n + j − 1

]
, i = 1, . . . ,M, (12)

where Nd is the number of current diagonal entries, a
and b depend on the location of current diagonal. For
lower left corner of the matrix in Equation (11), Nd = n
+ 1, a = L-Nd, b = L; otherwise, for upper right corner
of the same matrix, Nd = M-n, a = 1, b = L-Nd.
Obviously, Equation (12) can also be seen as a convolu-
tion sum that can be interpreted as an anti-causal FIR
filter. Accordingly, both of the above two cases can be
unified by formally setting qi[n] = 0, 0 ≤ n ≤ L-2, or L ≤
n ≤ M + L-2. Therefore, the synthesis transfer function
in the steady-state case is given by

Fi (z) =
S̃i (z)
Qi (z)

=
1
L

L∑
j=1

uj,iz(j−1) =
1
L

(
u1,i + u2,iz + · · · + uL,iz(L−1)

)
(13)

where S̃i (z) = Z
(
s̃i [n]

)
, Qi (z) z(

j−1) = Z
(
qi

[
n + j − 1

])
.

Consequently, the whole SSA procedure which con-
tains projection, reconstruction, and diagonal averaging
can be described by a global transfer function below

Ti (z) = Hi (z) Fi (z) =
Qi (z)
S (z)

• S̃i (z)
Qi (z)

=
S̃i (z)
S (z)

=
L−1∑

j=−(L−1)

tj,izj (14)

By substituting (10) and (11) into (14), we can see that
tj, i = t-j, i, j = 1,...,L-1. Let z = ejω, j =

√−1 , the related
frequency response arises via

Ti
(
ejω

)
= t0,i + 2

L−1∑
j=1

tj,i cos
(
jω

)
(15)

This is a zero-phase filter whose output signal is
always in phase with the input signal. So, the proposed
RFI suppression algorithm is a phase preserving method.
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Otherwise, it can be observed that |Hi (e
jω)| and |Fi

(ejω)| only differ in a scaling factor and the sign of the
power of the complex exponential argument. Hence, Ti

(ejω) resembles |Hi (e
jω)| in shape and its value can be

given by |Ti (e
jω)| = |Hi (e

jω)|2/L. The pattern of the
global FIR filter group is shown in Figure 1.
Besides, once alternative embedding procedure is

adopted–the trajectory matrix S has Hankel structure
but not Toeplitz structure (see [8,9] for example), the
properties of Hi (e

jω) and Fi (e
jω) will interchange, i.e.,

the former corresponding to an anti-casual filter
whereas the latter a casual filter.

3. Approximation of spectral decomposition
From Equations (10) (13), and (14), we learn that the
entries of eigenvector ui correspond to the coefficients
of the SSA FIR filter we proposed. Traditionally, eigen-
vectors can be obtained via spectral decomposition algo-
rithm, SVD on S or ED on G. Nevertheless, they are
prohibitive for large L. Here, we introduced two differ-
ent approximate spectral decomposition methods for
large dense matrices: Nyström method [11-15] and Col-
umn-Sampling approximation [14-17]. Both of them are
based on random sampling techniques which only oper-
ate on a subset of the matrix and provide a powerful
alternative for approximate spectral decomposition issue.
As described in the previous section, the proposed

algorithm focused working on the L × L SPSD matrix G
= SSH, whose spectral decomposition is G = UΛUH.
Suppose we randomly (so uniformly) sample l « L col-
umns of G without replacement. Let C denote the L × l
matrix formed by these sampled columns and W the l
×l matrix consisting of the intersection of these l col-
umns with corresponding l rows of G. Based on this
sampling, the columns and rows of G are rearranged.
Thus, without loss of generality, G and C can be written
as follows:

G =
(

W GH
21

G21 G22

)
andC =

(
W
G21

)
(16)

Note that W is also SPSD since G is SPSD. Through
performing ED or SVD on much smaller scale matrices
W and C, it can generate approximations of eigenpairs
U and Λ, denoted as Ũ and �̃ respectively, which we
now describe.
The Nyström method is originally introduced to

obtain numerical solutions to integral equations [25].
Then, the same idea is in turn applied to extend the
solution of a reduced matrix eigen-decomposition pro-
blem to approximate the eigenvectors of an SPSD
matrix. The Nyström method provides an approxima-
tion of G by using W and C as follows

G ≈ G̃ = CW−1CH =
(

W GH
21

G21 G21W−1GH
21

)
(17)

where -1 denotes the inverse of a matrix. Now define

spectral decomposition W = Uw�wUH
w , accordingly the

approximations of eigenpairs are

Ũ :=

√
l
L
CUw�−1

w
(18a)

�̃ :=
L

l
�w (18b)

Unlike the Nyström method, the Column-Sampling
method approximates the eigenpairs of G by using the
SVD of C directly. It is initially motivated by exploring a
simple and intuitive algorithm to compute a description
of a low-rank approximation to a very large matrix,
which is qualitatively faster than SVD [17]. Suppose the

SVD of C is C = Uc�cVH
c , then the approximated eigen-

pairs of G are obtained by

Ũ := Uc (19a)

�̃ :=

√
L
l
�c (19b)

Accordingly, it generates the approximation of G by

instituting (19a) and (19b) into G ≈ G̃ = Ũ�̃Ũ
H:

G ≈ G̃ = Ũ�̃Ũ
H

= Uc

√
L
l
�cUH

c =

√
L
l

(
CVc�

−1
c

)
�c

(
CVc�

−1
c

)H
=

√
L
l
C

(
Vc�

−1
c �c�

−H
c VH

c

)
CH =

√
L
l
C

(
Vc�

−H
c VH

c

)
CH

= C

⎛
⎝√

l
L

(
CHC

)1
2

⎞
⎠

−1

CH

(20)

Here, we adopts Uc = CVc�
−1
c and CHC = Vc�

2
cV

H
c .

Compared with (17), it is obvious that the two methods
Figure 1 FIR eigenfilter description: Hi(z) are analysis filters and
Fi(z) are synthesis filters.
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have resembling forms with each other, the latter

replaces W in (14) with
√

l
L

(
CHC

)1
2 .

The above sampling-based approximations adopt the
most basic uniform sampling approach to pick out l col-
umns from the original matrix G. Alternatively, some
researchers derived several non-uniformly sampling
approaches, i.e., selecting the ith column with a weight
that is proportional to either the corresponding diagonal
element Gii or the squared of the column-norm [13,17].
However, in the recent articles which have the guiding
significance for the applications of sampling-based
approximations on various problems, Kumor et al.
[14,15] pointed that, for large dense matrices, the uni-
form sampling without replacement approach, in addi-
tion to being more efficient both in time and space,
produces more effective approximations. Otherwise,
Kumor et al. [15] summarized that the low-rank approx-
imation issues can be classified into two groups–matrix
projection and spectral reconstruction. Furthermore, the
former approximations tend to be more accurate than
the latter approximations when adopt sampling-based
approximated methods. According to Equation (4), the
RFI signal reconstruction belongs to the first kind.
Based on the above analysis, using uniform sampling
approach is a good choice.
In the basic SSA algorithm, the most time-consuming

step is the spectral decomposition of the L × L matrix G
(or of the L × K trajectory matrix S). The computational
cost of SVD on S is usually computed by the means of
Golub and Reinsch algorithm [26], which requires O
(L2K+LK2+K3) multiplications. Using ED on G is even
more prohibitive required O(L3) multiplications. Contra-
rily, the Nyström method just needs to calculate the
eigenpairs of the sampled submatrix of G which requires
O(l3+l2L), r ≤ l, l3 required by ED on W and l2L for
multiplication with C, and the Column-Sampling
approximation needs O(L2l+Ll2+l3) multiplications for
SVD on C. After measuring differences of floating-point
numbers in arithmetic, we supply a comparison of con-
crete CPU time when implementing different spectral
decomposition algorithms on P-band real datasets,
shown in Section 4.

4. Numerical experiments
In this section, we first perform numerical simulations
for a time series to illustrate the methods discussed
above. We consider a linear frequency modulation
(LFM) signal, namely chirp signal, which is often used
as SAR transmitting pulse [27]: secho = exp(-jπKt2), -T/2
≤ t ≤ T/2, where the pulse width T = 32 μs, bandwidth
B = |K·T| is 9.6 MHz, the center frequency at zero and
sampling frequencies is 39.6 NHz. All these parameters

are typical for a SAR transmitting pulse, except the sam-
pling frequency. According to Nyquist principal 12 MHz
is enough for the given bandwidth, but we adopt a high
sampling frequency in order to obtain a comparatively
‘long’ time series which has 1,844 sample points. Three
real sinusoidal signals as RFIs, whose center frequencies
are 1.8, 3.2, and 3.5 MHz, respectively, have been added.
To set two RFIs with similar frequencies, we can exam-
ine the RFI suppression capability of SSA-FIR filter
banks when RFIs with close frequencies present, and the
signal-to-noise ratio is 40 dB.
We adopt the above LFM signal as a calibrated signal,

whose time domain waveform and corresponding power
spectrum are shown in Figure 2a, b. After contaminated
by RFIs (three sinusoidal signals), the time domain
waveform and power spectrum of the mixed signal are
shown in Figure 2c, d. One can see that the power of
RFIs is about 40 dB higher than that of the calibrated
signal. The method described in [5], we call it ‘ED
method’ for convenience, and the Notch filtering
method in [3] are chosen as contrast RFI suppression
algorithms. We choose L = 460 and because single sinu-

soidal signal sin (x) =
1
2

[
exp

(
jx

) − exp
(−jx

)]
corre-

sponds to rank 2, the rank is r = 6.
The reconstructed signals using accurate ED method

are shown in Figure 2e, f, corresponding to time and fre-
quency domains, respectively, and in Figure 2g, h, the
performances of the Notch filtering method are repre-
sented. Then, we first set l = floor(L/8) = 57, in this con-
dition, the reconstructed signals using the Column-
Sampling approximation and the Nyström method are
shown in Figure 2i-l. One can see the Column-Sampling
approximation works better and more approximately up
to the ED reconstructed performance. Contrarily, the
performance of the Nyström method is kind of unsatis-
factory. It still leaves about 10 dB RFIs energy and the
time domain signal wave is ‘chaotic’. Next, we set l =
floor(L/4) = 115 and the reconstructed signal using the
Nyström method are shown in Figure 2m, n. This time it
works better, more RFIs energy is removed but its perfor-
mance still little poorer than the Column-Sampling
approximation’s, even when the latter with half of the
sampling columns. The reason we will give through
further numerical analysis. However, the Nyström
method with l = floor(L/8) = 57 sampling columns still
removes more RFIs energy than the Notch filtering
method does. We can see the Notch caused some fre-
quency spectrum fracture and lost the most useful signal.
In the following, we monitor two quantificable criter-

ions of the two approximated methods compared with
the exact spectral decomposition, just for the eigenvec-

tors
{
ũi

}l
1
which construct the matrix Ũ in Equations
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(18a) and (19a). First, we compute the cosines of princi-
pal angles, between the exact and the approximate
eigenvectors: cos

(
Angle

)
=

(‖ui‖2 +
∥∥ũi

∥∥
2 − ∥∥ui − ũi

∥∥
2

)/(‖ui‖2 • ∥∥ũi
∥∥
2

)
,

i = 1,..l, which should be close to 1 for good approxima-
tion. Here, ||•||2 denotes 2-norm. When the number of
sampling columns varying, the error curves are shown
in Figure 3 (in which we just give the top 40 results).
We can see as the number of samples increasing, both
of the Column-Sampling and the Nyström method

generate more accurate eigenvectors, and the accuracies
of them are very close.
But, why their RFI suppression results are so different?

In Table 1, we give the orthonormality error for differ-
ent number of samples, which are measured by Frobe-

nius norm 10 log 10
(∥∥∥ŨŨ

H − I
∥∥∥
F

)
. We repeat the

excises for 50 times, and then compute the average
deviation values. The mean deviation from

Figure 2 Time domain signal waveforms and corresponding normalized power specturms, in due order of Chirp signal, Chirp and
sinusoidal mixed signal, and the reconstructed signals by the ED method, the Notch filtering method, the Column-Sampling
approximation, the Nyström method with 57 sampling columns and with 115 sampling columns, respectively.
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orthonormality decreases as the number of samples
increases for both of the two methods. But, the ortho-
normality error of the Nyström method is much larger
than the Column-Sampling approximation. This is the
reason for the poor Nyström method performance.
When extrapolates eigenvectors of G from eigenvectors
of W, the Nyström products lose orthonormality in this
process.
The frequency responses of the associated filters with

the first eight filter banks are shown in Figure 4. We
adopt l = floor(L/4) = 115 columns for the Nyström
method and half columns for the Column-Sampling
approximation. Figure 4a-f shows that the first six filters
have band-pass characteristics so that they mostly cap-
ture the three sinusoidal harmonics of the mixed signals.
Nevertheless, the other two filters shown in Figure 4g, h
as contrast are much less important when reconstruct-
ing signals. It illustrates that the two approximated
methods are effective for constructing the SSA-FIR filter
groups.
Then, we give the pulse compression results to illus-

trate the targets resolution capability after using above
multiple RFI suppression methods. All the reconstructed
signals are filtered by a matched filter Hmatch = exp

(jπKt2), -T/2 ≤ t ≤ T/2 [27]. When the calibrated signal
through the matched filter, it generates a waveform
whose peak value of the main lobe is at least 13 dB
higher than that of the highest pair of side lobes, and
the magnitudes of other side lobe pairs are decreasing
from center to both sides. Thus, the expected target can
be distinguished. However, when there are RFIs, through
matched filter we cannot differentiate the main lobe. We
compared the compression results by pairs, the contrast
waveforms are shown in Figure 5. One can see some
sidelobes still higher than -13.4 dB line when using the
Notch filtering method. Using the Nyström method
with 115 samples we can obtain a satisfactory wave
form, similar to the one when using the Column-Sam-
pling approximation. But, when with only 57 samples,
the Nyström method defeats the Notch filtering method
by a narrow margin.
Next, we will detect the proposed algorithm in practi-

cal scenario using real datasets which are collected by a
P-band airborne SAR. These datasets include 16,384
pulses along the azimuth direction and each pulse has
10,240 sample points. It means each time the series has
M = 10240 entries. The main system parameters are
reported in Table 2. The estimated Doppler center fre-
quency is 6.1 Hz. Range-Doppler image focus algorithm
[27] is adopted combined with motion compensation
processing.
Our experiments are made on a PC equipped with

Intel Core i3 CPU at 2.13 GHz with a duel core proces-
sor, 4 GB of RAM memory. We adopt L = 2048 as the
filter order, l = L/8 = 256 sampling columns for the

Figure 3 For different numbers of samples (l), cosines of principal angles between the exact and the approximated eigenvectors
obtained by the Column-Sampling approximation and the Nyström method, respectively.

Table 1 Mean deviation from orthonormality for different
number of samples

(dB) L = 40 L = 57 L = 115 L = 230

Col-Sampling -122.7831 -123.1009 -127.6824 -129.3135

Nyström 8.5372 7.1722 3.5932 2.9648
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Figure 4 Frequency response of the first eight zero-phase FIR filter banks constructed by the ED method, the Col-Sampling
approximation and the Nyström method, respectively.

Figure 5 Comparison of the pulse compression results.
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Column-Sampling approximation and the Nyström
method, and an extra l = L/4 = 512 sampling number
for the latter. The ED method and the Notch filtering
method are still as contrast RFI suppression algorithms.
For each pulse, the rank of the RFI subspace is given by
Equations (5)-(7). Figure 6a interprets multiple narrow-
band sources occurring at P-waveband. The focused
images after RFI suppression using the two contrast
method–ED method and the Notch filtering method–
are shown in Figure 6b, c respectively, and the other
three images on the next line are obtained using the
Column-Sampling approximation, the Nyström method
with 256 samples, and with 512 samples, respectively.
Figure 6b is considered as the optical reference image.

One can see that Figure 6c is blurred and the remaining
interferences are visible. Surprisingly, from Figure 6e, we
can see that the Nyström method with 256 samples
makes much better performance than that of the Notch
filtering. Although the simulation results in Figure 5a
show it just slightly better than the latter. One possible
reason is that the real scenario more RFIs exists, the
Notch filtering method is so inflexible that makes more
frequency gaps, and as shown in Figure 6d, f, the Col-
umn-Sampling approximation and the Nyström method
with 512 samples still have the similar suppression
effects. Otherwise, we use the MATLAB commands ‘tic’
and ‘toc’ to measure the required CPU running time
when adopting different spectral decomposition meth-
ods. The experimental results show that, for a single
pulse, adopting ED method needs to run for 26.5694 s,
the Column-Sampling approximation with l = 256 sam-
ples needs 1.7012 s, the Nyström method with l = 512
samples needs 1.9712 s, and the Nyström method with l
= 256 samples only needs 0.3771 s.

5. Conclusions
In this article, we give analysis of that the RFI suppres-
sion problem in SAR can be considered as one-dimen-
sional stationary time series denoising problem.

Table 2 Main system parameters

Polarization HH

Bandwidth 85 MHz

Wavelength 0.75 m

Aircraft velocity 176.97 m/s

Azimuth resolution 2 m

Range resolution 2 m

Pulse repetition frequency 1499.88 Hz

Near range 11861.57 m

Figure 6 P-Band image degraded by RF interferences in (a); the same images after filtering the RF interferences in due order with the
ED method in (b), the Notch filtering method in (c), the Column-Sampling approximation in (d), the Nyström method with 256
samples in (e) and with 512 samples in (f), respectively.
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Furthermore, by applying a linear invariant system the-
ory, the RFI suppression task can be achieved expedi-
ently by a zero-phase FIR filter whose coefficients are
related to the eigenvectors of the input signal covariance
matrix. Owing to the outputs being in phase with the
inputs, phase preserving can be available through the
proposed algorithm. What is more, in view of the large
amount of SAR original data and high complexity of
computing eigenvalues and eigenvectors, we first intro-
duce two random sampling methods to speed up the
SSA-FIR filter banks construction process. The results
of simulations and practical experiments illuminate that
the proposed filtering algorithm can be provided with
both efficiency and validity.
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