50 research outputs found

    Identification of natural killer markers associated with fatal outcome in COVID-19 patients

    Get PDF
    IntroductionIncreasing evidence has shown that coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunological response. Previous studies have demonstrated that natural killer (NK) cell dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of NK cell markers as a driver of death in the most critically ill patients.MethodsWe enrolled 50 non-vaccinated hospitalized patients infected with the initial virus or the alpha variant of SARS-CoV-2 with moderate or severe illness, to evaluate phenotypic and functional features of NK cells.ResultsHere, we show that, consistent with previous studies, evolution NK cells from COVID-19 patients are more activated, with the decreased activation of natural cytotoxicity receptors and impaired cytotoxicity and IFN-γ production, in association with disease regardless of the SARS-CoV-2 strain. Fatality was observed in 6 of 17 patients with severe disease; NK cells from all of these patients displayed a peculiar phenotype of an activated memory-like phenotype associated with massive TNF-α production.DiscussionThese data suggest that fatal COVID-19 infection is driven by an uncoordinated inflammatory response in part mediated by a specific subset of activated NK cells

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Co-infection of SARS-CoV-2 with other respiratory viruses and performance of lower respiratory tract samples for the diagnosis of COVID-19

    No full text
    International audienceObjectives: This study was performed during the early outbreak period of coronavirus disease 2019 (COVID-19) and the seasonal epidemics of other respiratory viral infections, in order to describe the extent of co-infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with other respiratory viruses. It also compared the diagnostic performances of upper respiratory tract (URT) and lower respiratory tract (LRT) samples for SARS-CoV-2 infection.Methods: From 25 January to 29 March 2020, all URT and LRT samples collected from patients with suspected COVID-19 received in the virology laboratory of Pitié-Salpêtrière University Hospital (Paris, France) were simultaneously tested for SARS-CoV-2 and other respiratory viruses.Results: A total of 1423 consecutive patients were tested: 677 (47.6%) males, 746 (52.4%) females, median age 50 (range, 1-103) years. Twenty-one (1.5%) patients were positive for both SARS-CoV-2 and other respiratory viruses. The detection rate of SARS-CoV-2 was significantly higher in LRT than in URT (53.6% vs. 13.4%; p<0.0001). The analysis of paired samples from 117 (8.2%) patients showed that SARS-CoV-2 load was lower in URT than in LRT samples in 65% of cases.Conclusion: The detection of other respiratory viruses in patients during this epidemic period could not rule out SARS-CoV-2 co-infection. Furthermore, LRT samples increased the accuracy of diagnosis of COVID-19

    HIV-1 Coreceptor Usage Assessment by Ultra-Deep Pyrosequencing and Response to Maraviroc.

    Get PDF
    Maraviroc is an HIV entry inhibitor that alters the conformation of CCR5 and is poorly efficient in patients infected by viruses that use CXCR4 as an entry coreceptor. The goal of this study was to assess the capacity of ultra-deep pyrosequencing (UDPS) and different data analysis approaches to characterize HIV tropism at baseline and predict the therapeutic outcome on maraviroc treatment.113 patients with detectable HIV-1 RNA on HAART were treated with maraviroc. The virological response was assessed at months 1, 3 and 6. The sequence of the HIV V3 loop was determined at baseline and prediction of maraviroc response by different software and interpretation algorithms was analyzed.UDPS followed by analysis with the Pyrotrop software or geno2pheno algorithm provided better prediction of the response to maraviroc than Sanger sequencing. We also found that the H34Y/S substitution in the V3 loop was the strongest individual predictor of maraviroc response, stronger than substitutions at positions 11 or 25 classically used in interpretation algorithms.UDPS is a powerful tool that can be used with confidence to predict maraviroc response in HIV-1-infected patients. Improvement of the predictive value of interpretation algorithms is possible and our results suggest that adding the H34S/Y substitution would substantially improve the performance of the 11/25/charge rule

    Discovery, SAR study and ADME properties of methyl 4-amino-3-cyano-1-(2-benzyloxyphenyl)-1 H -pyrazole-5-carboxylate as an HIV-1 replication inhibitor

    No full text
    International audience(ESI) available: [biology: experimental procedures, full results of the first screening, dose-response curves; chemistry: general procedures, compounds characterization, 1 H and 13 C NMR spectra]. SeeInspired by the antiviral activity of known pyrazole-based HIV inhibitors, we screened our in-house library of pyrazole-based compounds to evaluate their in cellulo activity against HIV-1 replication. Two hits with very similar structures appeared from single and multiple-round infection assays to be non-toxic and active in a dose-dependent manner. Chemical expansion of their series allowed an in-depth and consistent structure–activity-relationship study (SAR) to be built. Further ADME evaluation led to the selection of 4-amino-3-cyano-1-(2-benzyloxyphenyl)-1H-pyrazole-5-carboxylate with an advantageous pharmacokinetic profile. Finally, examination of its mode of action revealed that this compound does not belong to the three main classes of anti-HIV drugs, a feature of prime interest in the context of viral resistance
    corecore