8 research outputs found

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Get PDF
    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU

    EXA2PRO programming environment:Architecture and applications

    Get PDF
    The EXA2PRO programming environment will integrate a set of tools and methodologies that will allow to systematically address many exascale computing challenges, including performance, performance portability, programmability, abstraction and reusability, fault tolerance and technical debt. The EXA2PRO tool-chain will enable the efficient deployment of applications in exascale computing systems, by integrating high-level software abstractions that offer performance portability and efficient exploitation of exascale systems' heterogeneity, tools for efficient memory management, optimizations based on trade-offs between various metrics and fault-tolerance support. Hence, by addressing various aspects of productivity challenges, EXA2PRO is expected to have significant impact in the transition to exascale computing, as well as impact from the perspective of applications. The evaluation will be based on 4 applications from 4 different domains that will be deployed in JUELICH supercomputing center. The EXA2PRO will generate exploitable results in the form of a tool-chain that support diverse exascale heterogeneous supercomputing centers and concrete improvements in various exascale computing challenges
    corecore