34 research outputs found

    Dating and localizing an invasion from post-introduction data and a coupled reaction-diffusion-absorption model

    Full text link
    Invasion of new territories by alien organisms is of primary concern for environmental and health agencies and has been a core topic in mathematical modeling, in particular in the intents of reconstructing the past dynamics of the alien organisms and predicting their future spatial extents. Partial differential equations offer a rich and flexible modeling framework that has been applied to a large number of invasions. In this article, we are specifically interested in dating and localizing the introduction that led to an invasion using mathematical modeling, post-introduction data and an adequate statistical inference procedure. We adopt a mechanistic-statistical approach grounded on a coupled reaction-diffusion-absorption model representing the dynamics of an organism in an heterogeneous domain with respect to growth. Initial conditions (including the date and site of the introduction) and model parameters related to diffusion, reproduction and mortality are jointly estimated in the Bayesian framework by using an adaptive importance sampling algorithm. This framework is applied to the invasion of \textit{Xylella fastidiosa}, a phytopathogenic bacterium detected in South Corsica in 2015, France

    A dedicated flavin-dependent monooxygenase catalyzes the hydroxylation of demethoxyubiquinone into ubiquinone (coenzyme Q) in \u3ci\u3eArabidopsis\u3c/i\u3e

    Get PDF
    Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylatebridged di-iron domain, At1g24340 is homologous to FADdependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone’s ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of ho

    Regulation of anthocyanin biosynthesis by nitrogen in grapevine berry cells by a systems biology approach

    No full text
    Les anthocyanes sont une famille de polyphĂ©nols trĂšs rĂ©pandus chez les vĂ©gĂ©taux. Chez la vigne, elles sont responsables de la coloration des baies des cĂ©pages rouges, et sont impliquĂ©es dans les propriĂ©tĂ©s organoleptiques des vins. Une nutrition azotĂ©e faible induit la production des anthocyanes dans les cellules de la pellicule de raisin des cĂ©pages rouges via des mĂ©canismes de rĂ©gulation qui ne sont pas encore totalement Ă©lucidĂ©s. Dans ce contexte, nous avons Ă©tudiĂ© les mĂ©canismes molĂ©culaires impliquĂ©s dans la rĂ©ponse de l’accumulation des anthocyanes pour diffĂ©rents niveaux d’apports azotĂ©s. Deux matĂ©riels biologiques complĂ©mentaires ont Ă©tĂ© utilisĂ©s : des suspensions cellulaires de vigne (lignĂ©e GT3) et des plants de Cabernet-Sauvignon, cultivĂ©s au vignoble.L’augmentation de la synthĂšse d’anthocyanes en rĂ©ponse Ă  la diminution de la nutrition azotĂ©e a Ă©tĂ© confirmĂ©e dans les baies et les cellules de vigne en culture. Les analyses transcriptomiques globales (gĂ©nome complet) et ciblĂ©es (qPCR) ont mis en lumiĂšre des modifications de l’expression gĂ©nique, notamment de gĂšnes liĂ©s au mĂ©tabolisme des flavonoĂŻdes, en rĂ©ponse Ă  la nutrition azotĂ©e. L’expression de nombreux gĂšnes structuraux impliquĂ©s dans la voie de biosynthĂšse des anthocyanes est induite par une faible nutrition azotĂ©e. La variation de l’apport azotĂ© influence Ă©galement de façon coordonnĂ©e l’expression des gĂšnes rĂ©gulateurs positifs (facteurs de transcription de type MYB) et nĂ©gatifs (protĂ©ine de type Lateral organ Boundary Domain (LBD)) des gĂšnes de la biosynthĂšse des flavonoĂŻdes chez la Vigne. L’expression de gĂšnes liĂ©s Ă  la production d’énergie (NADH, NADPH), est Ă©galement affectĂ©e.En parallĂšle, une approche intĂ©grative a Ă©tĂ© dĂ©veloppĂ©e sur les suspensions cellulaires, en combinant des mesures d’activitĂ©s enzymatiques, des dosages de mĂ©tabolites primaires et secondaires, avec un modĂšle de balance de flux (Flux Balance Analysis, FBA). Les cartes de flux obtenues prĂ©disent que la diminution de l’apport azotĂ© entraĂźne une augmentation des flux mĂ©taboliques dans la voie du shikimate et des phĂ©nylpropanoĂŻdes ; ainsi qu’une rĂ©pression de la majoritĂ© des flux dans les diffĂ©rentes voies du mĂ©tabolisme primaire, Ă  l’exception de la voie des pentoses phosphates, dont le flux est maintenu, et de la voie de synthĂšse de l’amidon qui est accrue. Les rĂ©sultats obtenus plaident en faveur d’un lien fort entre synthĂšse des anthocyanes et statut Ă©nergĂ©tique (ATP, NADPH) des cellules vigne.Anthocyanins are polyphenol compounds very abundant in most of the plants. In grapevine, they give color to red berries and they improve red wine quality and increase the organoleptic properties of the wine. Low nitrogen supply stimulates anthocyanin production in berry skin cells of red grape varieties through regulation mechanisms that are far from being fully understood. In this context, we worked on the molecular mechanisms involved in anthocyanin biosynthesis response to nitrogen supply. Two complementary biological materials were used: grapevine cell suspensions (GT3 line) that originate from a teinturier cultivar and produce anthocyanins under normal conditions; and red grape berries of cv. Cabernet-Sauvignon cultivated in a commercial vineyard. Increases of anthocyanins synthesis in response to low nitrogen levels were confirmed in the field-grown berries and the cells suspensions. Both comparative global (microarrays) and targeted (qPCR) transcriptomic analysis showed different regulations on the expression of the genes involved in the secondary (especially the anthocyanin) and nitrogen metabolisms. The expression of most structural genes of the anthocyanin biosynthesis pathway was induced by a low nitrogen supply. Nitrogen controls also the expression of the positive (MYB transcription factors) and negative (Lateral organ Boundary Domain family protein LBD39) regulatory genes of the flavonoid pathway in grapevine. Furthermore, some genes improved in energy production (ATP, NADPH) were affected. In parallel, an integrative approach combining enzymatic activities and primary and secondary metabolites measurements with developing a Flux Balance Analysis (FBA) modeling approach was used on cells suspensions GT3. The flux maps deciphered that low nitrogen increases metabolic fluxes in shikimate and phenylpropanoid pathways and represses the majority metabolic fluxes in different pathways of primary metabolism. The two exceptions included the pentose phosphate pathway, which the flux metabolism was maintained, and the starch synthesis pathway, which was enhanced. The results obtained showed a strong link between anthocyanin synthesis and energy status (ATP, NADPH) in the berry cell suspensions

    Regulation of anthocyanin biosynthesis by nitrogen in grapevine berry cells by a systems biology approach

    No full text
    Les anthocyanes sont une famille de polyphĂ©nols trĂšs rĂ©pandus chez les vĂ©gĂ©taux. Chez la vigne, elles sont responsables de la coloration des baies des cĂ©pages rouges, et sont impliquĂ©es dans les propriĂ©tĂ©s organoleptiques des vins. Une nutrition azotĂ©e faible induit la production des anthocyanes dans les cellules de la pellicule de raisin des cĂ©pages rouges via des mĂ©canismes de rĂ©gulation qui ne sont pas encore totalement Ă©lucidĂ©s. Dans ce contexte, nous avons Ă©tudiĂ© les mĂ©canismes molĂ©culaires impliquĂ©s dans la rĂ©ponse de l’accumulation des anthocyanes pour diffĂ©rents niveaux d’apports azotĂ©s. Deux matĂ©riels biologiques complĂ©mentaires ont Ă©tĂ© utilisĂ©s : des suspensions cellulaires de vigne (lignĂ©e GT3) et des plants de Cabernet-Sauvignon, cultivĂ©s au vignoble.L’augmentation de la synthĂšse d’anthocyanes en rĂ©ponse Ă  la diminution de la nutrition azotĂ©e a Ă©tĂ© confirmĂ©e dans les baies et les cellules de vigne en culture. Les analyses transcriptomiques globales (gĂ©nome complet) et ciblĂ©es (qPCR) ont mis en lumiĂšre des modifications de l’expression gĂ©nique, notamment de gĂšnes liĂ©s au mĂ©tabolisme des flavonoĂŻdes, en rĂ©ponse Ă  la nutrition azotĂ©e. L’expression de nombreux gĂšnes structuraux impliquĂ©s dans la voie de biosynthĂšse des anthocyanes est induite par une faible nutrition azotĂ©e. La variation de l’apport azotĂ© influence Ă©galement de façon coordonnĂ©e l’expression des gĂšnes rĂ©gulateurs positifs (facteurs de transcription de type MYB) et nĂ©gatifs (protĂ©ine de type Lateral organ Boundary Domain (LBD)) des gĂšnes de la biosynthĂšse des flavonoĂŻdes chez la Vigne. L’expression de gĂšnes liĂ©s Ă  la production d’énergie (NADH, NADPH), est Ă©galement affectĂ©e.En parallĂšle, une approche intĂ©grative a Ă©tĂ© dĂ©veloppĂ©e sur les suspensions cellulaires, en combinant des mesures d’activitĂ©s enzymatiques, des dosages de mĂ©tabolites primaires et secondaires, avec un modĂšle de balance de flux (Flux Balance Analysis, FBA). Les cartes de flux obtenues prĂ©disent que la diminution de l’apport azotĂ© entraĂźne une augmentation des flux mĂ©taboliques dans la voie du shikimate et des phĂ©nylpropanoĂŻdes ; ainsi qu’une rĂ©pression de la majoritĂ© des flux dans les diffĂ©rentes voies du mĂ©tabolisme primaire, Ă  l’exception de la voie des pentoses phosphates, dont le flux est maintenu, et de la voie de synthĂšse de l’amidon qui est accrue. Les rĂ©sultats obtenus plaident en faveur d’un lien fort entre synthĂšse des anthocyanes et statut Ă©nergĂ©tique (ATP, NADPH) des cellules vigne.Anthocyanins are polyphenol compounds very abundant in most of the plants. In grapevine, they give color to red berries and they improve red wine quality and increase the organoleptic properties of the wine. Low nitrogen supply stimulates anthocyanin production in berry skin cells of red grape varieties through regulation mechanisms that are far from being fully understood. In this context, we worked on the molecular mechanisms involved in anthocyanin biosynthesis response to nitrogen supply. Two complementary biological materials were used: grapevine cell suspensions (GT3 line) that originate from a teinturier cultivar and produce anthocyanins under normal conditions; and red grape berries of cv. Cabernet-Sauvignon cultivated in a commercial vineyard. Increases of anthocyanins synthesis in response to low nitrogen levels were confirmed in the field-grown berries and the cells suspensions. Both comparative global (microarrays) and targeted (qPCR) transcriptomic analysis showed different regulations on the expression of the genes involved in the secondary (especially the anthocyanin) and nitrogen metabolisms. The expression of most structural genes of the anthocyanin biosynthesis pathway was induced by a low nitrogen supply. Nitrogen controls also the expression of the positive (MYB transcription factors) and negative (Lateral organ Boundary Domain family protein LBD39) regulatory genes of the flavonoid pathway in grapevine. Furthermore, some genes improved in energy production (ATP, NADPH) were affected. In parallel, an integrative approach combining enzymatic activities and primary and secondary metabolites measurements with developing a Flux Balance Analysis (FBA) modeling approach was used on cells suspensions GT3. The flux maps deciphered that low nitrogen increases metabolic fluxes in shikimate and phenylpropanoid pathways and represses the majority metabolic fluxes in different pathways of primary metabolism. The two exceptions included the pentose phosphate pathway, which the flux metabolism was maintained, and the starch synthesis pathway, which was enhanced. The results obtained showed a strong link between anthocyanin synthesis and energy status (ATP, NADPH) in the berry cell suspensions

    Myoplastie d'allongement du muscle temporal et neurorraphie entre le nerf facial et le nerf trijumeau

    No full text
    CAEN-BU MĂ©decine pharmacie (141182102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Effect of norepinephrine on spinal cord blood flow and parenchymal hemorrhage size in acute-phase experimental spinal cord injury.

    No full text
    International audiencePURPOSE: In the acute phase of spinal cord injury (SCI), ischemia and parenchymal hemorrhage are believed to worsen the primary lesions induced by mechanical trauma. To minimize ischemia, keeping the mean arterial blood pressure above 85 mmHg for at least 1 week is recommended, and norepinephrine is frequently administered to achieve this goal. However, no experimental study has assessed the effect of norepinephrine on spinal cord blood flow (SCBF) and parenchymal hemorrhage size. We have assessed the effect of norepinephrine on SCBF and parenchymal hemorrhage size within the first hour after experimental SCI. METHODS: A total of 38 animals were included in four groups according to whether SCI was induced and norepinephrine injected. SCI was induced at level Th10 by dropping a 10-g weight from a height of 10 cm. Each experiment lasted 60 min. Norepinephrine was started 15 min after the trauma. SCBF was measured in the ischemic penumbra zone surrounding the trauma epicenter using contrast-enhanced ultrasonography. Hemorrhage size was measured repeatedly on parasagittal B-mode ultrasonography slices. RESULTS: SCI was associated with significant decreases in SCBF (P = 0.0002). Norepinephrine infusion did not significantly modify SCBF. Parenchymal hemorrhage size was significantly greater in the animals given norepinephrine (P = 0.0002). CONCLUSION: In the rat, after a severe SCI at the Th10 level, injection of norepinephrine 15 min after SCI does not modify SCBF and increases the size of the parenchymal hemorrhage

    Rat model of spinal cord injury preserving dura mater integrity and allowing measurements of cerebrospinal fluid pressure and spinal cord blood flow.

    No full text
    International audiencePURPOSES: Cerebrospinal fluid (CSF) pressure elevation may worsen spinal cord ischaemia after spinal cord injury (SCI). We developed a rat model to investigate relationships between CSF pressure and spinal cord blood flow (SCBF). METHODS: Male Wistar rats had SCI induced at Th10 (n = 7) or a sham operation (n = 10). SCBF was measured using laser-Doppler and CSF pressure via a sacral catheter. Dural integrity was assessed using subdural methylene-blue injection (n = 5) and myelography (n = 5). RESULTS: The SCI group had significantly lower SCBF (p < 0.0001) and higher CSF pressure (p < 0.0001) values compared to the sham-operated group. Sixty minutes after SCI or sham operation, CSF pressure was 8.6 ± 0.4 mmHg in the SCI group versus 5.5 ± 0.5 mmHg in the sham-operated group. No dural tears were found after SCI. CONCLUSION: Our rat model allows SCBF and CSF pressure measurements after induced SCI. After SCI, CSF pressure significantly increases
    corecore