
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Biochemistry -- Faculty Publications Biochemistry, Department of 

10-6-2021 

A dedicated flavin-dependent monooxygenase catalyzes the A dedicated flavin-dependent monooxygenase catalyzes the 

hydroxylation of demethoxyubiquinone into ubiquinone hydroxylation of demethoxyubiquinone into ubiquinone 

(coenzyme Q) in (coenzyme Q) in Arabidopsis Arabidopsis 

Scott Latimer 

Shea A. Keene 

Lauren R. Stutts 

Antoine berger 

Ann C. Bernert 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub 

This Article is brought to you for free and open access by the Biochemistry, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty 
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/biochemfacpub
https://digitalcommons.unl.edu/biochemistry
https://digitalcommons.unl.edu/biochemfacpub?utm_source=digitalcommons.unl.edu%2Fbiochemfacpub%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Scott Latimer, Shea A. Keene, Lauren R. Stutts, Antoine berger, Ann C. Bernert, Eric Soubeyrand, Janet D. 
Wright, Catherine F. Clarke, Anna K. Block, Thomas A. Colquhoun, Christian Elowsky, Alan C. Christensen, 
Mark A. Wilson, and Gilles J. Basset 



A dedicated flavin-dependent monooxygenase catalyzes the
hydroxylation of demethoxyubiquinone into ubiquinone
(coenzyme Q) in Arabidopsis
Received for publication, July 9, 2021, and in revised form, September 30, 2021 Published, Papers in Press, October 6, 2021,
https://doi.org/10.1016/j.jbc.2021.101283

Scott Latimer1,* , Shea A. Keene2, Lauren R. Stutts1 , Antoine Berger1 , Ann C. Bernert1, Eric Soubeyrand1,
Janet Wright3 , Catherine F. Clarke4 , Anna K. Block5, Thomas A. Colquhoun2, Christian Elowsky6,
Alan Christensen3 , Mark A. Wilson7, and Gilles J. Basset1,*
From the 1Department of Horticultural Sciences and 2Department of Environmental Horticulture, Plant Innovation Center,
Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; 3School of Biological Sciences,
University of Nebraska-Lincoln, Lincoln, Nebraska, USA; 4Department of Chemistry and Biochemistry and the Molecular Biology
Institute, University of California, Los Angeles, California, USA; 5Center for Medical, Agricultural and Veterinary Entomology,
Chemistry Research Unit, ARS, USDA, Gainesville, Florida, USA; 6Department of Agronomy and Horticulture and 7Department of
Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Edited by Joseph Jez

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor
and liposoluble antioxidant. In plants, it is not known how
the C-6 hydroxylation of demethoxyubiquinone, the penul-
timate step in ubiquinone biosynthesis, is catalyzed. The
combination of cross-species gene network modeling along
with mining of embryo-defective mutant databases of Ara-
bidopsis thaliana identified the embryo lethal locus EMB2421
(At1g24340) as a top candidate for the missing plant deme-
thoxyubiquinone hydroxylase. In marked contrast with pro-
totypical eukaryotic demethoxyubiquinone hydroxylases, the
catalytic mechanism of which depends on a carboxylate-
bridged di-iron domain, At1g24340 is homologous to FAD-
dependent oxidoreductases that instead use NAD(P)H as an
electron donor. Complementation assays in Saccharomyces
cerevisiae and Escherichia coli demonstrated that At1g24340
encodes a functional demethoxyubiquinone hydroxylase and
that the enzyme displays strict specificity for the C-6 position
of the benzoquinone ring. Laser-scanning confocal micro-
scopy also showed that GFP-tagged At1g24340 is targeted to
mitochondria. Silencing of At1g24340 resulted in 40 to 74%
decrease in ubiquinone content and de novo ubiquinone
biosynthesis. Consistent with the role of At1g24340 as a
benzenoid ring modification enzyme, this metabolic blockage
could not be bypassed by supplementation with
4-hydroxybenzoate, the immediate precursor of ubiquinone’s
ring. Unlike in yeast, in Arabidopsis overexpression of
demethoxyubiquinone hydroxylase did not boost ubiquinone
content. Phylogenetic reconstructions indicated that plant
demethoxyubiquinone hydroxylase is most closely related to
prokaryotic monooxygenases that act on halogenated aro-
matics and likely descends from an event of horizontal gene
transfer between a green alga and a bacterium.

Ubiquinone (Coenzyme Q) is a liposoluble redox cofactor
that fulfills vital functions both as an electron carrier of the
respiratory chain and as a component of the antioxidant ma-
chinery of the cell (1, 2). Reflecting such core functions, ge-
netic defects that fully block ubiquinone biosynthesis in plants
result in embryo lethal phenotypes (3, 4). Because ubiquinone
is one of the major liposoluble free-radical scavengers in eu-
karyotes (1, 5), there has been sustained interest in engineering
crops with higher ubiquinone content in order to enhance
their nutritional value and improve their resistance to abiotic
stresses (6–10). This engineering approach, however, is
contingent upon the knowledge of the ubiquinone biosynthetic
pathway and its regulation in plants.

Ubiquinone is made up of prenyl and benzoquinone moi-
eties (Fig. 1). In flowering plants, the early ubiquinone pre-
cursors are mevalonate for the prenyl chain and phenylalanine
and tyrosine for the benzenoid ring (11–14). In Arabidopsis
thaliana, phenylalanine is the preferred ring precursor and
is incorporated into ubiquinone via the formation of
4-hydroxybenzoate (12–14). Arabidopsis genes for the pre-
nylation of 4-hydroxybenzoate, as well as for the O- and
C-methylations and C5-hydroxylation of the ring, have been
identified (4, 15, 16). The subcellular localization of the pre-
nyltransferase and the O-methyltransferase has been investi-
gated, and both enzymes have been shown to be mitochondrial
(4, 15). By contrast, nothing is known in plants about the other
ring decoration steps, including decarboxylation and hydrox-
ylation at the C-1 position and hydroxylation at the C-6 po-
sition. The C6-hydroxylation, which represents the
penultimate step in ubiquinone biosynthesis, is of specific in-
terest because it has been shown in other eukaryotes to control
the flux of ubiquinone production and to be subjected to
posttranslational regulations (17–19). In metazoans, yeast, and
some bacteria, the corresponding enzyme is an O2-dependent
carboxylate-bridged diiron protein called Coq7 (EC 1.14.99.60;
Fig. 1), also known as clk-1 or CAT5, which uses* For correspondence: Gilles Basset; Scott Latimer, scottlatimer@ufl.edu.
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demethoxyubiquinone as a cosubstrate (20–23). Land plants
and green algae lack homologs of this enzyme. Escherichia coli
does not possess a Coq7 homolog either, but has instead a
catalytically equivalent—though structurally unrelated—FAD-
dependent monooxygenase called UbiF (Fig. 1; (24)). E. coli
also has two additional FAD-dependent monooxygenases,
called UbiH (EC 1.14.99.B5) and UbiI (EC 1.14.13.240), which
catalyze the C-1 and C-5 hydroxylations, respectively (25, 26).
However, this framework of dedicated monooxygenases for
each reaction of hydroxylation in ubiquinone biosynthesis is
not universal as many bacteria have evolved enzymes that
catalyze more than one hydroxylation on the benzenoid ring;
these include atypical O2-independent hydroxylases as well as
bifunctional (C-1/C-5 hydroxylations) or even trifunctional
(C-1/C-5/C-6 hydroxylations) FAD-dependent mono-
oxygenases (23, 27). Such an evolutionary precedent for the
existence of nonregioselective FAD-dependent mono-
oxygenases is significant because Arabidopsis encodes an
FAD-dependent monooxygenase, COQ6 (At3g24200), which
complements a yeast ubiquinone biosynthetic mutant lacking
C-5 hydroxylase activity (Fig. 1; (16)). Given the absence of
Coq7 homologs in plants, the question arises as to whether
this Arabidopsis COQ6 could also hydroxylate the C-1 and
C-6 ring positions.

The identification of plant ubiquinone biosynthetic genes
corresponding to the ring decoration steps has historically
been achieved via homology searches and complementation of
cognate null mutants in yeast (4, 15, 16). Yet, applying this
strategy to search for the missing plant C-6 hydroxylase is not
straightforward. Indeed, not only are COQ7 homologs absent
from plant genomes, but in yeast the presence of the Coq7
protein is required for the stability of other enzymes and
proteins involved in ubiquinone biosynthesis (28). Because the
missing plant C-6 hydroxylase is necessarily a non-Coq7 ho-
molog, it appears unlikely that this enzyme would meet the
structural requirements for the functional replacement of
Coq7 in yeast complementation assays.

In this study, we deploy parallel complementation strategies
designed to mitigate the shortcomings of structural compati-
bility between plant monooxygenase candidates and the hy-
droxylation of demethoxyubiquinone in yeast and E. coli.
Having shown that Arabidopsis COQ6 behaves as a strict C-5
hydroxylase in complementation assays, we combine pheno-
typic and gene coexpression data mining to identify the
authentic plant demethoxyubiquinone hydroxylase.

Results

Arabidopsis COQ6 is a monofunctional flavin-dependent
monooxygenase

To determine whether the Arabidopsis FAD-dependent
COQ6 monooxygenase doubles as the enzyme responsible
for the hydroxylation at the C-6 position of ubiquinone’s ring,
its full-length cDNA was subcloned into yeast expression
vector pYES-DEST52 and introduced into yeast strain
E194KCoq7. This strain harbors a missense mutation that
affects the diiron center of Coq7; the E194KCoq7 cells there-
fore lack Coq7 activity and are devoid of ubiquinone (28).
Unlike the coq7 null mutant, however, the E194KCoq7 strain
still produces the coq7 polypeptide, which despite being
catalytically inactive retains the capacity to stabilize other
ubiquinone biosynthetic proteins (28). Such an arrangement is
notable as it allows the E194KCoq7 mutant to accumulate
demethoxyubiquinone, the substrate of the Coq7-catalyzed
reaction, and facilitates functional complementation by
structurally unrelated FAD-dependent monooxygenases (28).
Yet, HPLC analyses showed that the extract of E194KCoq7
cells expressing Arabidopsis COQ6 did not contain detectable
amount of ubiquinone (Fig. 2A). As expected, no comple-
mentation was observed in the cells harboring empty
pYES-DEST52, while expression of wild-type Coq7 restored
ubiquinone biosynthesis (Fig. 2A).

To confirm these results, the Arabidopsis COQ6 cDNA was
cloned without its targeting presequence-encoding region into
expression vector pBAD24 and introduced into the E. coli null
mutants corresponding to FAD-dependent monooxygenases
UbiI, UbiH, and UbiF. As expected here again, HPLC analyses
of bacterial extracts indicated that expression of Arabidopsis
COQ6 in the ΔubiIc mutant resulted in the restoration of
ubiquinone production and near complete disappearance of the
early ubiquinone biosynthetic intermediate, octaprenyl phenol
(Fig. 2B). In contrast, either marginal or no restoration of
ubiquinone production was observed for the ΔubiH and ΔubiF
null mutants, respectively (Fig. 2, C and D). Together these
results demonstrate that Arabidopsis COQ6 does not moon-
light as a demethoxyubiquinone hydroxylase, and therefore that
plants must possess a separate enzyme to catalyze the hy-
droxylation at the C-6 position of the benzoquinone ring.

Plants have flavin-dependent oxidoreductases of unknown
function that are essential for embryo development and are
coexpressed with respiratory genes

We hypothesized that the gene encoding plant demethox-
yubiquinone hydroxylase should fit the criteria classically
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Figure 1. Structure of ubiquinone and nomenclature of the hydroxy-
lases associated to its biosynthesis. UbiF, UbiI, UbiH, and Coq6 are
FAD-dependent monooxygenases; Coq7 is an unrelated carboxylate-
bridged diiron protein. Some bacteria possess multifunctional hydroxy-
lases, some of which specifically induced in anaerobiosis or microaerobiosis,
which are not represented here. Question marks indicate that the corre-
sponding hydroxylase is unknown. The letter n designates the number of
isoprenyl units (C5) in the polyprenyl moiety of ubiquinone. This number
can vary between species; for instance, ubiquinone-6, ubiquinone-8 and
ubiquinone-9 are the predominant forms in Saccharomyces cerevisiae,
Escherichia coli, and Arabidopsis thaliana, respectively.
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observed for ubiquinone biosynthetic genes: i) its loss of
function should result in the absence of ubiquinone and
therefore cause embryo lethality, and ii) its coexpression

network should display some functional connections with the
respiratory chain. Searching a recently updated dataset of
known embryo-defective mutants (510 genes) in Arabidopsis
(29) using the term “hydroxylase” identified a single entry,
EMB2421 (At1g24340), annotated as “polyketide hydroxylase-
related monooxygenase.” Neither At1g24340 nor any of its
plant orthologs have a known cellular function. Since the
EMB2421 locus was identified via a single untagged T-DNA
insertion (30), two additional T-DNA lines corresponding to
independent insertions in At1g24340’s first intron
(SALK_073461C and SALK_084134) were examined. For both
lines about 25% of the segregating seeds in the siliques of the
self-pollinated heterozygous plants were indeed aborted and
no homozygous mutant could be recovered (Fig. S1). Cross-
species analyses of the coexpression profiles of At1g24340
and its orthologs in Medicago, soybean, rice, and tomato
indicated that a number of respiratory genes were repeatedly
detected among the top 0.8 to 1.2% expressed loci of each
cognate database (Fig. 3A; Dataset S1). Most remarkable
among these tightly coregulated genes were ubiquinone
biosynthetic genes themselves, including COQ6 (soybean,
Medicago, rice), COQ9 (Arabidopsis, Tomato, rice), COQ8
(Arabidopsis, Medicago), COQ10 (soybean), COQ5 (Tomato),
COQ3 and COQ1 (rice) (Fig. 3A). We consequently deemed
At1g24340 as a strong candidate for the missing plant deme-
thoxyubiquinone hydroxylase.

At1g24340 encodes for a 709 amino acid protein (�78 kDa)
that possesses a conserved FAD/NAD(P)H binding domain
(InterPro 002938; residues 47–421) (Fig. 3, B and C). This
domain is found in a number of FAD-dependent oxidore-
ductases that use NAD(P)H as an electron donor and O2 as a
cosubstrate, including the UbiF/UbiH/UbiI/COQ6 mono-
oxygenases (Fig. 3, B and C). At1g24340, however, markedly
differs from these proteins in that it features an additional
unintegrated region (residues 518–709) resulting in a protein
that is 23 to 36 kDa larger than these other monooxygenases
(Fig. 3, B and C). Structure modeling predicted that
At1g24340’s unintegrated region folds as a thioredoxin domain
(Fig. 3C); the latter, however, lacks the canonical CXXC motif.
The closest At1g24340 homologs of known function are bac-
terial hydroxylases involved in the catabolism of halogenated
aromatic compounds; we will return to this topic later.

At1g24340 is targeted to mitochondria

At1g24340 and its orthologs sampled among vascular plants
display highly divergent N-terminal extensions of 22 to 48
residues that are characteristic of organelle targeting se-
quences (Fig. 4A). DeepLoc-1.0 (31) and Predotar (32) analyses
gave high probability (>80%) for localization of At1g24340 to
the mitochondrion (Table S1), and a high-throughput prote-
omics study detected At1g24340’s signature peptides in puri-
fied leaf mitochondria (33). In contrast, the output of a Wolf
Psort (34) analysis indicated that ten of At1g24340’s top 14
nearest neighbors were localized in the chloroplast, one was
cytosolic, and only three were mitochondrial (Table S1).
IPSORT predicted At1g24340 as having a chloroplast transit
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Figure 2. AtCOQ6 functions as a strict C-5 monooxygenase. A, ubiqui-
none analyses in wild-type (JM43) and E194KCoq7 yeast cells. Extracts were
obtained from similar number of cells grown in minimal medium containing
0.1% glucose (w/v) and 2% (w/v) D-galactose and harvested in exponential
phase of culture. Extracts were analyzed by HPLC with diode array detec-
tion. B–D, ubiquinone analyses in E. coli. Cells were grown on LB medium
with 0.02% arabinose as an inducer, except for the AtCOQ6 construct-
bearing strains that were induced with 0.2% arabinose and the ΔubiF:UbiF
strain that was grown without inducer. Extracts from identical number of
cells were analyzed by HPLC with diode array detection. ΔubiIc designates a
ΔubiI strain that has been cured of its original deletion cassette; this strain
contains trace amounts of ubiquinone owing to the C-5 hydroxylase
moonlighting activity of UbiF (26). DMQ, demethoxyubiquinone;
OPP, 2-octaprenylphenol.
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peptide (Table S1). To disambiguate the subcellular localiza-
tion of At1g24340, its full-length cDNA—minus its stop codon
(Table S2)—was fused in-frame to the 50-end of GFP, and this
construct was coinfiltrated with an RFP-tagged mitochondrial
marker in Nicotiana benthamiana epidermal cells. Laser-
scanning confocal microscopy showed that both fluorescent
reporter proteins imaged as discrete punctate structures that
moved quickly along cytosolic streams as typically observed for
mitochondria (Fig. 4, B, C, and E). Strict overlap of the GFP
and RFP signals was observed in cells that coexpressed the
corresponding fusion proteins, while no GFP-associated fluo-
rescence was observed in plastids (Fig. 4, D and E). At1g24340
appears therefore to be targeted exclusively to mitochondria.

At1g24340 complements the C-6 hydroxylation defect of the
yeast E194KCoq7 and E. coli ΔubiF knockouts

Expression of At1g24340’s full-length cDNA into the yeast
E194KCoq7 point mutant restored the ability of these cells to
utilize nonfermentable carbon substrates, and the growth of
this transformant was similar to that of the E194KCoq7
mutant after reintroduction of a functional Coq7 copy
(Fig. 5A). Furthermore, HPLC analyses confirmed that
ubiquinone-6 biosynthesis had been restored in the
E194KCoq7 cells harboring the At1g24340 construct (Fig. 5B).
Similarly, expression of a matured version of At1g24340—i.e.,
minus its mitochondrial presequence—complemented an
E. coli ΔubiF mutant strain, both when scored for restoration
of ubiquinone-8 production and decrease in the accumulation
of demethoxyubiquinone-8, the substrate of UbiF (Fig. 5C). In
contrast, no complementation was observed when At1g24340
was expressed in the ΔubiIc and ΔubiH mutant strains (Fig. 5,
D and E). These data demonstrate that At1g24340 bears
demethoxyubiquinone hydroxylase activity and that this
enzyme displays strict specificity for the C-6 position of the
benzoquinone ring.

At1g24340 knockdown plants display impaired ubiquinone
biosynthesis, while overexpression of At1g24340 does not
boost ubiquinone level in Arabidopsis

To circumvent the embryo lethal phenotype associated with
the complete blockage of ubiquinone biosynthesis in plants
and directly investigate the function of At1g24340 in Arabi-
dopsis, antisense constructs constitutively targeting three re-
gions of At1g24340’s mRNA were generated (Fig. 6A).
Transformants were recovered for all three constructs. Real-
time quantitative RT-PCR analysis performed on T1 plants
identified five lines (3–10, 3–12, 2–4, 1–3, and 2–1) with
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respiratory genes were extracted from the top 200 coexpressors of
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represent ubiquinone biosynthetic genes (COQ); open circles represent
genes encoding for components of the respiratory chain or for redox en-
zymes directly connected to it. Identical colors indicate orthology between
species. B, schemes comparing the domain organization and size of
At1g24340 with those of Arabidopsis COQ6 (AtCOQ6) and E. coli mono-
oxygenases UbiF, UbiH, and UbiI. Numbers indicate the beginning and end

residues of predicted FAD/NAD(P)H binding domains (orange stripes) or
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of demethoxyubiquinone hydroxylase At1g24340, E. coli UbiF, and
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Alphafold models and have been removed for clarity.
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Figure 4. Subcellular localization of At1g24340. A, alignment of the N-terminal regions of At1g24340 and its orthologs in Fragaria vesca, Malus domestica,
Populus trichocarpa, Citrus clementina, Cicer arietinum, Solanum lycopersicum, Spinacia oleracea, Oryza sativa, Sorghum bicolor, and Selaginella moellendorffii.
Identical and similar residues are shaded in black and gray, respectively. Dashes represent gaps introduced to maximize alignment. B, transient expression
and confocal microscopy imaging of At1g24340 fused to the N-terminus of GFP in Nicotiana benthamiana epidermal cells. C, RFP-tagged isovaleryl-CoA
dehydrogenase (mitochondrial marker). D, auto-fluorescence of chlorophyll. E, overlay of the green, red, and blue pseudo-colors.
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pronounced decreases in the level of At1g24340 transcripts,
the value of which ranged from 23% to 41% of that of the
vector alone controls (Fig. 6B). HPLC analyses of rosette leaf
extracts indicated that the ubiquinone-9 content of these
transgenics was 40% (RNAi plants 1–3, 2–4, 3–12) to 74%
(RNAi plant 2–1) lower than that measured for the vector
alone control (Fig. 6C). Similar marked decreases were
observed for the isotopic enrichment of ubiquinone-9 when
either of the early precursors of its benzenoid ring, Phe-
[Ring-13C6] and Tyr-[13C9;

15N], was fed to axenic cultures of
RNAi plants 2–1 and 3–12 (Fig. 6D). Furthermore, in contrast
to the situation observed for a p-coumaroyl-CoA ligase (4 cl)
knockout, which is impaired in the formation of
4-hydroxybenzoate (12), feeding this immediate precursor of
ubiquinone’s ring did not restore ubiquinone level in RNAi
plants 2–1 (Fig. 6E). All together these results demonstrate
that the loss of function of At1g24340 results in a metabolic
blockage downstream of the formation of ubiquinone’s ring
and confirm that At1g24340 acts as a ring modification
enzyme. As previously observed for Arabidopsis mutants dis-
playing similar losses in ubiquinone content (12, 14),
At1g24340 silenced plants were visually indistinguishable from
their wild-type parent (data not shown).

In parallel, Arabidopsis lines overexpressing At1g24340
cDNA under the control of the constitutive 35S promoter
were generated. Real-time quantitative RT-PCR analysis
showed that in homozygous T3 overexpressor lines 9–5,
11–2, and 16–1, the levels of At1g24340 transcripts were
28, 15, and 20 times higher than that of the empty vector
controls, respectively (Fig. 7A). None of these lines, however,
displayed any statistically significant increase in ubiquinone
content as compared with their empty vector counterparts
(Fig. 7B).

At1g24340 is closely related to bacterial FAD-dependent
monooxygenases involved in the catabolism of halogenated
aromatic compounds

BLAST searches of the NCBI database using At1g24340 as a
query detected orthologs throughout green plant lineages
except Gymnosperms (Fig. 8A). These orthologs appeared to
be also absent in Glaucophytes and Rhodophytes, the latter
having Coq7 homologs such as yeast and metazoans (Fig. 8A).
Close homologs of At1g24340 (25–31% identity) were none-
theless detected outside the Archaeplastida clade, including in
bacteria, fungi, and unsurprisingly in the secondary plastid-
bearing Cryptomonads (Fig. 8A). Notable among these non-
plant homologs are bacterial FAD-dependent monooxygenases
that operate in the degradation pathway of halogenated aro-
matic compounds and that display the same substrate regio-
selectivity as At1g24340 (Fig. 8, A and B; (35, 36)). The
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silenced transgenics from lines 3–10, 3–12, 2–4, 1–3, and 2–1. Each trans-
genic line originates from an independent event of insertion. Data are
means of three biological replicates ±SE. Single asterisks indicate significant
differences from the empty-vector control as determined by Fisher’s test
(p < α = 0.05) from an analysis of variance. C, total ubiquinone-9 content in
the rosette leaves of 4-week-old empty vector control plants and silenced
transgenics from lines 3–10, 3–12, 2–4, 1–3, and 2–1. Data are means of
7 (empty vector) to 3 (RNAi plants 3–12, 2–4, 1–3, and 2–1) or 2 (RNAi plants
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15N]. Data are means of five
biological replicates ±SE. Single asterisks indicate significant differences from
the corresponding empty-vector control (i.e., Phe fed or Tyr fed) as deter-
mined by Fisher’s test (p < α = 0.05) from an analysis of variance. E, total

ubiquinone-9 content in whole Arabidopsis seedlings fed axenically for 24 h
with or without (DMSO control) 10 μM of 4-hydroxybenzoate (4-HB).
4 cl homozygous SALK_043310 (at4g19010) knockout; 2–1: homozygous
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function of the fungal homologs is not known, but these en-
zymes are unlikely to function in ubiquinone biosynthesis
either as their harboring species possess Coq7 homologs
(Fig. 8A). Phylogenetic reconstructions confirmed that
At1g24340, its plant orthologs, and its closest prokaryotic
homologs are evolutionarily distinct from UbiF mono-
oxygenases, the latter segregating into an outgroup at the root
of the At1g24340 phylogeny (Fig. 8C). Remarkably, the plant
protein group branches within that of their prokaryotic ho-
mologs, forming a sister clade with the hydroxylases acting on
halogenated aromatics (Fig. 8C). This arrangement indicates
that plant demethoxyubiquinone hydroxylases likely descend
from an event of horizontal gene transfer with a bacterium.

Discussion

The C-6 hydroxylation of ubiquinone’s ring has long
remained elusive in plants, orthologs of the canonical deme-
thoxyubiquinone hydroxylases Coq7 and UbiF missing in all
Viridiplantae lineages. In this study, we demonstrate that plant
demethoxyubiquinone hydroxylase is structurally and evolu-
tionary distinct from all eukaryotic or prokaryotic ubiquinone

biosynthetic monooxygenases known to date. Phylogenetic
reconstructions indicate that the plant enzyme is instead most
closely related to bacterial monooxygenases that act on halo-
genated aromatic compounds. These enzymes belong to group
A of FAD-dependent monooxygenases, which are single-gene
encoded and use NAD(P)H as an electron donor (37). Most of
these monooxygenases act on phenolic compounds, for which
they display marked selectivity and regioselectivity (37). The
ubiquinone biosynthetic monooxygenases, UbiF/UbiH/UbiI/
COQ6, are also classified as group A FAD-dependent mono-
oxygenases (23), but lack the conserved C-terminal domain
(�200 residues) of plant demethoxyubiquinone hydroxylase.
The function of this domain, which is found in a number of
group A FAD-dependent monooxygenases, is uncertain.
Structural studies of some bacterial monooxygenases indicate
that this domain is localized at the interface of dimers of these
enzymes and therefore could take part in their oligomerization
(38, 39). However, other group A monooxygenases that harbor
a similar C-terminal domain have been shown to be active as
monomers (40, 41). The sole consensus seems to be that this
C-terminal extension does not contribute directly to the
binding of substrates or flavin cofactor (39, 40, 42).

The taxonomic distribution and phylogeny of At1g24340
and of its orthologs suggest that the ancestor of these genes
was captured in green algae via an event of horizontal gene
transfer with a bacterium. The neo-functionalization of this
gene as a demethoxyubiquinone hydroxylase could have either
predated or postdated its transfer from bacteria to green algae.
Furthermore, the presence of Coq7 in Glaucophytes and
Rhodophytes is consistent with the evolutionary scenario in
which this carboxylate-bridged diiron enzyme was the ances-
tral C-6 hydroxylase in all Archaeplastida and was replaced in
Viridiplantae by its horizontally inherited counterpart. This
FAD-dependent demethoxyubiquinone hydroxylase was then
vertically transmitted throughout embryophyte lineages. Fail-
ure of homology searches to detect homologs in Gymno-
sperms likely results from the limited coverage of the existing
genome assemblies in this group. The absence or sporadic
distribution of other ubiquinone biosynthetic enzymes in
Gymnosperm species strongly supports this possibility (data
not shown).

Laser-scanning confocal microscopy shows that
GFP-tagged At1g24340 is exclusively targeted to mitochon-
dria, and for that matter is no different from other eukaryotic
demethoxyubiquinone hydroxylases (43). Together with
4-hydroxybenzoate prenyltransferase (EC 2.5.1.39; COQ2)
and polyprenyldihydroxybenzoate/demethylubiquinone 3-O-
methyltransferase (EC 2.1.1.114/2.1.1.64; COQ3) (4, 15, 44),
demethoxyubiquinone hydroxylase is therefore the third ring
decoration enzyme of the ubiquinone biosynthetic pathway
in plants now shown to localize to mitochondria. These re-
sults contradict the early report that the prenyl transferase,
methyl transferase, and hydroxylase activities associated with
ubiquinone biosynthesis in plants copurify with endoplasmic
reticulum/Golgi apparatus-containing fractions (45). The
recent observations that ubiquinone biosynthetic enzymes
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Figure 7. Overexpression of At1g24340. A, qRT-PCR analyses of
At1g24340 mRNA levels in the rosette leaves of 4-week-old homozygous
T3 plants corresponding to empty vector control and At1g24340-over-
expressing transgenics from lines 9–5, 11–2, and 16–1. Each line originates
from an independent event of insertion. Data are means of three bio-
logical replicates ±SE. Single asterisks indicate significant differences from
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from an analysis of variance. B, total ubiquinone-9 content in the rosette
leaves of 4-week-old homozygous T3 plants corresponding to empty
vector control plants and At1g24340-overexpressing transgenics from lines
9–5, 11–2, and 16–1. Data are means of four biological replicates ±SE.
Single asterisks indicate significant differences from the empty-vector
control as determined by Fisher’s test (p < α = 0.05) from an analysis of
variance.
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involved in the ring decoration steps associate within discrete
mitochondrial domains at the points of contact with the
endoplasmic reticulum (46, 47) strongly suggest that sub-
cellular fractionation procedures may shear off such mem-
brane structures, resulting in the artifactual localization of
some ubiquinone biosynthetic enzymes in microsomes.

Loss of function of At1g24340 results in embryo lethality,
which strongly suggests that the Arabidopsis genome does
not encode for additional demethoxyubiquinone hydroxy-
lases. Our data also indicate that overexpression of deme-
thoxyubiquinone hydroxylase alone is not sufficient to boost
ubiquinone content in Arabidopsis. This finding is in marked
contrast with the situation observed in yeast, in which
deregulation of Coq7 activity has been shown to result in a
250% increase in ubiquinone level (18, 48). Last, our func-
tional complementation assays demonstrating that
At1g24340 encodes for a strictly monofunctional mono-
oxygenase imply that plants must possess a separate enzyme

for the C-1 hydroxylation step of their ubiquinone biosyn-
thetic pathway.

Experimental procedures

Bioinformatics

Gene networks in Arabidopsis, Medicago truncatula, soy-
bean, rice, and tomato were reconstructed from the top 200
coexpressors of expressed loci mined from the ATTED-II
database ((49); https://atted.jp) using At1g24340 as an initial
query. Respiratory genes were manually extracted from the
resulting lists of coexpressed genes and their functional an-
notations verified via TAIR (https://www.arabidopsis.org/
index.jsp) for Arabidopsis genes and via BLASTp searches
for M. truncatula, soybean, rice, and tomato (Dataset S1).
Protein domain predictions were performed using the InterPro
search tools ((50); http://www.ebi.ac.uk/interpro/). Co-
ordinates for predicted models of At1g24340, E. coli UbiF, and
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Saccharomyces cerevisiae COQ7 were retrieved from the
AlphaFold Protein Structure Database at EMBL-EBI (https://
alphafold.ebi.ac.uk) (51). Superposition of the At1g24340 and
E. coli UbiF models was performed in Coot (52) using sec-
ondary structure matching (53). The core superimposed re-
gions of At1g24340 and E. coli UbiF comprise the FAD/
NAD(P)H domains (315 amino acids with 25 gaps) and have a
Cα RMSD of 2.95 Å with 16% sequence identity. Visualization
of protein models was made with POVScript+ (54). For
phylogenetic reconstructions, At1g24340 homologs were
mined using BLASTp searches (Table S3) and analyzed using
the following phylogeny tool suite from Phylogeny.fr (55):
MUSCLE for multiple alignments, Gblocks for curation of
misalignments and divergent regions, PhyML for maximum
likelihood reconstruction, and TreeDyn for tree visualization.
Default parameters were used for all the programs.

Chemical and reagents

Standards of ubiquinone-6, -9, and -10 were from Sigma-
Aldrich. Ubiquinone-8 was purified from E. coli extracts.
Briefly, E. coli cells from a 50-ml aerobic culture were pelleted,
washed once with 25 ml of 0.9% (w/v) NaCl solution, and
resuspended in 1 ml of water. Cells were transferred to a pyrex
screw cap tube containing 500 μl of 0.1 mm zirconia/silica
beads (Biospec products) and were vortexed for 90 s. Two
milliliters of 95% (v/v) ethanol was then added to the disrupted
cells, and the mixture was heated at 70 �C for 10 min. This
extract was then partitioned twice with 5 ml of hexane, and the
hexane layers were combined and evaporated to dryness using
a gentle flow of N2. The sample was resuspended in 1 ml of
methanol:dichloromethane (10:1) and chromatographed
(100 μl injections) on a 5 μM Supelco Discovery C-18 column
(25 cm × 4.6 mm, Sigma-Aldrich) maintained at 30 �C and
developed at a flow rate of 1.5 ml min−1 with 100% methanol.
Ubiquinone-8 (retention time 17.6 min) was manually
collected between 17.4 and 17.8 min by absorbance moni-
toring at 275 nm, and pooled fractions were evaporated to
dryness using a gentle flow of N2. Solutions of ubiquinone
standards were prepared in 100% ethanol and quantified using
the following extinction coefficients at 275 nm:
14,900 M−1 cm−1 (Q-6 and Q-8), 14,700 M−1 cm−1 (Q-9), and
14,600 M−1 cm−1 (Q-10) (56). Quinol counterparts were pre-
pared by reaction with sodium borohydride. L-Phe-[ring-13C6]
and L-Tyr-[13C9-

15N] were from Cambridge Isotope Labora-
tories Inc. Unless otherwise mentioned, other chemicals and
reagents were from Fisher Scientific.

E. coli and yeast strains

E. coli strain ΔubiIc (cured) was that described in (26). E. coli
strains ΔubiH (JW2875-1; ΔubiH758::kan) and ΔubiF
(JW0659-5; ΔubiF722::kan) were from the Keio collection (57)
and were obtained from CGSC (https://cgsc.biology.yale.edu).
S. cerevisiae strain E194KCoq7 (MATα leu2-3112 ura3-52
trp1-289 his4-580 coq7 G580 A (KAN)) and its JM43 parent
(MATα leu2-3112 ura3-52 trp1-289 his4-580) were those
described in (28).

Functional complementations of E. coli and yeast mutants

Gene-specific primers for the PCR amplifications described
thereafter are listed in Table S2. Full-length and truncated
cDNAs of At3g24200 (D50→M50) and At1g24340 (E42→M42)
were prepared from Arabidopsis (Col-0) total leaf RNAs using
the RNeasy Plant Mini Kit (Qiagen) and RT-PCR. E. coli genes
ubiI, ubiH, and ubiF were PCR amplified from E.coli (K12)
genomic DNA. Yeast gene COQ7 was PCR amplified from the
genomic DNA of S. cerevisiae strain BY4741. PCR products
corresponding to the truncated cDNAs of At3g24200 and
At1g24340, ubiI, ubiH, and ubiF were cloned into EcoRI/XbaI-
digested pBAD24 (58) using In-Fusion Cloning strategy
(Takara Bio). PCR products corresponding to the full-length
cDNA of At3g24200, At1g24340, and COQ7 were cloned
into yeast expression vector pYES-DEST52 using Gateway
technologies (Invitrogen). Empty pBAD24 and pYES-DEST52
were used as negative controls of complementation. Yeast
transformants were selected at 30 �C on DOB media (MP
Biomedicals) + CSM without uracil (MP Biomedicals). Selec-
tion medium of the E194KCoq7 strain also contained G418
(200 μg/ml). E. coli transformants were selected using the
appropriate antibiotics. For analyses of yeast phenotypes on
plates, overnight liquid precultures were diluted at a final
optical density of 0.2, 0.02, 0.002, or 0.0002 at 600 nm, and
were spotted on YNB solid medium with ammonium sulfate
(MP Biodemicals) containing the appropriate amino acids, 2%
(w/v) glucose or 3% (v/v) glycerol/2.5% (v/v) ethanol as carbon
sources, and 0.05% (w/v) D-galactose as an inducer. Plates
were incubated at 30 �C for 2 days (glucose) or 4 days (glyc-
erol/ethanol).

Plant material and growth conditions

Arabidopsis SALK_073461C and SALK_084134 (59) inser-
tion lines were obtained from ABRC (genotyping primers are
listed in Table S2). The Arabidopsis 4 cl mutant
(SALK_043310) was that described in (12). The three antisense
constructs targeting At1g24340 were synthesized (Genscript)
based on cDNA base numbering as follows: RNAi-1, 7 to 330
(sense) and 7 to 595 (antisense); RNAi-2, 678 to 980 (sense)
and 678 to 1219 (antisense); RNAi-3, 1087 to 1358 (sense) and
1087 to 1608 (antisense). Each construct included 100-bp
Gateway cloning sequences attL1 and aatL2 (Invitrogen) at
the 50-end and 30-end, respectively. These constructs were
cloned into pUC57 (Genscript) and then transferred into plant
constitutive expression vector pB2GW7 (60) using Gateway
technology. The overexpression construct was generated by
subcloning full-length At1g24340 cDNA into pB2GW7 using
Gateway technology (PCR primers are listed in Table S2).
Antisense, overexpression, and vector alone constructs were
introduced into Arabidopsis plants (Col-0) via Agrobacterium
tumefaciens strain C58C1 using the floral dip method (61). T1
transgenics were selected on soil with glufosinate
(120 mg ml−1) applications. Segregating T2 lines were selected
on Murashige and Skoog solid medium (MP Biomedicals)
containing 1% (w/v) sucrose and glufosinate (20 mg ml−1) and
then transferred to soil. The same in vitro selection was used to
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determine the germination ratios of T3 plants and identify
their homozygous T2 parent lines. For quantitative Real-Time
PCR (qRT-PCR) analysis, total RNAs were prepared from
rosette leaves using the RNeasy Plant Mini Kit (Qiagen) and
quantified by absorbance at 260 nm. cDNAs were synthesized
using the ImProm-II Reverse Transcription System (Promega).
PCR amplifications were performed using the Applied Bio-
systems StepOnePlus Real-Time PCR System with PowerUp
SYBR Green Master Mix (Applied Biosystems) and the refer-
ence gene actin2 (At3g18780) according to the 2−ΔΔCq method.
Corresponding PCR primers are listed in Table S2. For both
in vitro and soil-grown plants, standard culture conditions
were 12-h days (110 μE m−2 s−1) at 22 �C, and soil-grown
plants were fertilized biweekly. For high light and dark ex-
periments, plants were acclimated to continuous high light
intensity (500 μE m−2 s−1) or continuous darkness for 24 h
prior to harvesting the rosette leaves. For heavy isotope feeding
experiments, homozygous T2 plants were germinated on
Murashige and Skoog solid medium (1% [w/v] sucrose). After
7 days seedlings were transferred to sterile flasks containing
20 ml of Murashige and Skoog medium (1% [w/v] sucrose)
with gentle shaking in 12-h days (110 μE m−2 s−1) at 22 �C.
After 10 to 11 days, 250 μM doses of L-Phe-[ring-13C6] and
L-Tyr-[13C9-

15N] were added to the cultures, and whole plants
were harvested 3 h later.

Ubiquinone analyses

Yeast cells were cultured at 30 �C in YNB with ammonium
sulfate (MP Biomedicals) + CSM without uracil (MP Bio-
medicals) liquid medium containing 0.1% glucose (w/v) as a
carbon source and 2% (w/v) D-galactose as an inducer. E. coli
was grown aerobically at 37 �C in LB medium with 0.02 to
0.2% (w/v) or without arabinose as an inducer. Yeast and
E. coli cultures (20 ml) were harvested in the mid to late-log
phase, and cell pellets were resuspended in 1 ml of water.
Cell suspensions were quantified by absorbance at 600 nm and
stored at −80 �C. Extractions of yeast cell pellets and Arabi-
dopsis tissues were performed as described in (3). The
extraction procedure of E. coli cell pellets was similar to that
used for yeast except that the cell disruption step was carried
out using 0.1 mm zirconia/silica beads (Biospec products).
Ubiquinone-10 (1.5–5.5 nmol) was added to the extracts as an
internal standard. Extracts were analyzed by HPLC with diode
array detection using a 5 μM Supelco Discovery C-18 column
(25 cm × 4.6 mm, Sigma-Aldrich) thermostated at 30 �C. The
column eluate was monitored at 275 nm (quinones) and
290 nm (quinols). For yeast samples, the column was devel-
oped at a flow rate of 1 ml min−1 in a stepwise fashion with
100% methanol from 0 to 13 min and then 90% methanol/10%
hexane from 13 to 42 min. Retention times were 11.4 min
(ubiquinone-6) and 28.5 min (ubiquinone-10). Ubiquinol-6
was converted into ubiquinone-6 during the extraction pro-
cedure. For E. coli and Arabidopsis samples, the column was
developed at a flow rate of 1 ml min−1 in isocratic mode with
90% methanol/10% hexane. Retention times were 9 min
(octaprenylphenol), 9.2 min (ubiquinol-9), 9.3 min

(demethoxyubiquinone-8), 10 min (ubiquinone-8), 12 min
(ubiquinol-10), and 17.2 min (ubiquinone-10). Ubiquinol-8
fully reoxidized into ubiquinone-8 during the extraction of
the E. coli cells. Data were corrected for recovery, and for
Arabidopsis samples reoxidation, of the ubiquinone-10 inter-
nal standard. Recovery values ranged from 70% to 95%; quinol
reoxidation in Arabidopsis samples was approximately 10%.
For UPLC-QTOF analyses, Arabidopsis samples (27–238 mg
of fresh weight) were spiked with 100 pmol of ubiquinone-10
and processed as previously described (3) except that the
reduction step with NaBH4 was omitted. Extracts (0.2 ml in
methanol:dichloromethane [10:1, vol/vol]) were chromato-
graphed on a Zorbax Eclipse Plus C18 RRHD (50 × 2.1 mm,
1.8 μm, Agilent Technologies) held at 40 �C and at a flow rate
of 0.2 ml min−1. Mobile phases consisted of (A) 10 mM
ammonium acetate in methanol:isopropanol (80:20, vol/vol)
and (B) 10 mM ammonium acetate in isopropanol:hexane
(60:40, vol/vol). The column was developed using the
following elution program: 15% B (0–3 min), linear gradient 15
to 60% B (3–5 min), 60% B (5–6 min), and 2 min post run re-
equilibration to initial conditions. The column eluate was
analyzed in positive ionization mode using a hybrid quadru-
pole orthogonal time of flight spectrometer (Agilent Tech-
nologies) equipped with a dual Agilent Jet Stream electrospray
ionization source. The spectrometer was operated in scan
mode (70–2000 m/z) at 3 spectra s−1 with the following source
conditions: capillary voltage, 3000 V; nozzle voltage, 2000 V;
gas temperature, 200 �C; drying gas flow, 13 ml min−1; nebu-
lizer pressure, 20 psig; sheath gas flow, 12 ml min−1. [13C6]-
ubiquinone-9 and ubiquinone-9 (retention time 4.72 min)
were quantified as [M+NH4] ammonium adducts at m/z
818.65 and m/z 812.65, respectively. Recovery corrections
were performed via quantification of the ammonium adduct of
ubiquinone-10 (m/z 880.72; retention time 5.74 min). Quan-
tification of the rate of de novo ubiquinone biosynthesis in
continuous high light conditions or continuous dark condi-
tions was performed as described in (14).

Subcellular localization of At1g24340

At1g24340 cDNA was PCR amplified minus its stop codon
(primers are listed in Table S2) and cloned into pK7FWG2
(60) using Gateway technology (Invitrogen) resulting in an in-
frame fusion of At1g24340 to the 50-end of GFP. This
construct was electroporated into A. tumefaciens C58C1, and
the transformed cells were coinfiltrated into the abaxial side of
the leaves of N. benthamiana together with an A. tumefaciens
strain harboring pZP212 for expression of an RFF-tagged
fragment of isovaleryl-CoA dehydrogenase (62). Leaves were
imaged 48 h later using a Nikon A1 Plus confocal Microscope
equipped with a Plan Apo VC 60 × A WI DIC N2 objective.
Imaging and analyses were done with Nikon NIS-Elements
5.20.02 (Build 1453). GFP, RFP, and chlorophyll were
excited and collected sequentially using the following excita-
tion/emissions wavelengths: 488 nm/500 to 550 nm (GFP),
561 nm/570 to 620 nm (RFP), and 640 nm/650 to 720 nm
(chlorophyll).
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