28 research outputs found
The Neurotensin Receptor-1 Pathway Contributes to Human Ductal Breast Cancer Progression
BACKGROUND: The neurotensin (NTS) and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1), are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion. METHODS AND RESULTS: we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs) by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients. CONCLUSION: these data support the activation of neurotensinergic deleterious pathways in breast cancer progression
Neurotensin Receptor 1 Is Expressed in Gastrointestinal Stromal Tumors but Not in Interstitial Cells of Cajal
Gastrointestinal stromal tumors (GIST) are thought to derive from the interstitial cells of Cajal (ICC) or an ICC precursor. Oncogenic mutations of the KIT or PDGFRA receptor tyrosine kinases are present in the majority of GIST, leading to ligand-independent activation of the intracellular signal transduction pathways. We previously investigated the gene expression profile in the murine KitK641E GIST model and identified Ntsr1 mRNA, encoding the Neurotensin receptor 1, amongst the upregulated genes. Here we characterized Ntsr1 mRNA and protein expression in the murine KitK641E GIST model and in tissue microarrays of human GIST. Ntsr1 mRNA upregulation in KitK641E animals was confirmed by quantitative PCR. Ntsr1 immunoreactivity was not detected in the Kit positive ICC of WT mice, but was present in the Kit positive hyperplasia of KitK641E mice. In the normal human gut, NTSR1 immunoreactivity was detected in myenteric neurons but not in KIT positive ICC. Two independent tissue microarrays, including a total of 97 GIST, revealed NTSR1 immunoreactivity in all specimens, including the KIT negative GIST with PDGFRA mutation. NTSR1 immunoreactivity exhibited nuclear, cytoplasmic or mixed patterns, which might relate to variable levels of NTSR1 activation. As studies using radio-labeled NTSR1 ligand analogues for whole body tumor imaging and for targeted therapeutic interventions have already been reported, this study opens new perspectives for similar approaches in GIST
Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells
<p>Abstract</p> <p>Background</p> <p>Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells.</p> <p>Methods</p> <p>Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting.</p> <p>Results</p> <p>Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells.</p> <p>Conclusions</p> <p>While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent.</p
Activation of receptor gene transcription is required to maintain cell sensitization after agonist exposure - Study on neurotensin receptor
Neurotensin (NT) acts through specific G protein-coupled receptors to induce effects in the central nervous system and periphery. In this study we have shown that in the human neuroblastoma cell Line CHP 212, an NT agonist, JMV 449, induced high affinity neurotensin receptor (NTR) gene activation. I-125-NT binding of cells challenged with JMV 449 rapidly decreased then reappeared and subsequently stabilized at 50% of the control values after 48 h of agonist exposure. These receptors, which reappeared at the cell surface, are as active as those found in control cells as demonstrated by Ca2+ mobilization. Furthermore, the tyrosine hydroxylase (TH) gene, a known NT target gene, remained activated after prolonged NT agonist exposure in this cell line. In the murine neuroblastoma cell line, N1E-115, NT did not stimulate NTR gene activation but induced NTR mRNA destabilization after long term agonist exposure. In this cell line, NT binding dropped to 15% of control values and remained at this value after agonist treatment. The TH expression, which was originally activated upon NT agonist exposure, decreased to control values after prolonged agonist exposure.
These observations combined with the data obtained from a complementary study with HT-29 cells (Souaze, F., Rostene, W., and Forgez, P. (1997) J. Biol. Chem. 272, 10087-10094) revealed the crucial role of agonist-induced receptor gene transcription in the maintenance of cell sensitivity. A model for G protein-coupled receptor regulation induced by prolong and intense agonist stimulation is proposed
Proopiomelanocortin Gene Expression in the Ovary of the Frog, Rana esculentaa
International audienc
Generation of Multipotent Early Lymphoid Progenitors from Human Embryonic Stem Cells
International audienceDuring human embryonic stem cell (ESC) hematopoietic differentiation, the description of the initial steps of lymphopoiesis remains elusive. Using a two-step culture procedure, we identified two original populations of ESC-derived hematopoietic progenitor cells (HPCs) with CD34+CD45RA+CD7- and CD34+CD45RA+CD7+ phenotypes. Bulk cultures and limiting dilution assays, culture with MS5 cells in the presence of Notch ligand Delta-like-1 (DL-1), and ex vivo colonization tests using fetal thymic organ cultures showed that although CD34+CD45RA+CD7- HPCs could generate cells of the three lymphoid lineages, their potential was skewed toward the B cell lineages. In contrast, CD34+CD45RA+CD7+ HPCs predominantly exhibited a T/natural killer (NK) cell differentiation potential. Furthermore these cells could differentiate equivalently into cells of the granulo-macrophagic lineage and dendritic cells and lacked erythroid potential. Expression profiling of 18 markers by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that CD34+CD45RA+CD7- and CD34+CD45RA+CD7+ HPCs express genes of the lymphoid specification and that CD34+CD45RA+CD7- cells express B-cell-Associated genes, while CD34+CD45RA+CD7+ HPCs display a T-cell molecular profile. Altogether, these findings indicate that CD34+CD45RA+CD7- and CD34+CD45RA+CD7+ HPCs correspond to candidate multipotent early lymphoid progenitors polarized toward either the B or T/NK lineage, respectively. This work should improve our understanding of the early steps of lymphopoiesis from pluripotent stem cells and pave the way for the production of lymphocytes for cell-based immunotherapy and lymphoid development studies. © Copyright 2014, Mary Ann Liebert, Inc. 2014