7 research outputs found

    Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV

    Get PDF
    The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV

    Individualized Approach in the Surgical Management of Hepatocellular Carcinoma: Results from a Greek Multicentre Study

    No full text
    Background: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third leading cause of death worldwide. The management of HCC is complex, with surgical treatment providing long-term survival in eligible patients. This study aims to present the experience of aggressive surgical management of HCC in Greece. Methods: This is a retrospective multicentre clinical study with 242 patients. Results: Most patients were male (79%) and had a median age of 71 yrs. According to the most recent BCLC criteria, 172 patients (71.1%) were classified as BCLC 0-A stage, 33 patients (13.6%) were classified as BCLC B, and 37 (15.3%) were classified as BCLC C. A total of 54% of the patients underwent major hepatectomy. Major postoperative morbidity was 15.6%, and the 90-day postoperative mortality rate was 4.5%. The median follow-up was 33.5 months. Three- and five-year overall survival was 65% and 48%, respectively. The median overall survival was 55 months. Significantly, five-year survival was 55% for BCLC A, and 34% and 21% for BCLC B and C, respectively. In univariate analysis, cirrhosis, type of resection (R status), and BCLC stage were associated with overall survival. Multivariate analysis indicated that R1 and R2 resections compared to R0, and BCLC C compared to BCLC 0-A, were independently associated with increased mortality. Conclusions: Aggressive surgical treatment of HCC offers satisfactory long-term survival prospects. A significant percentage (29%) of HCCs that underwent liver resection were of the intermediate and advanced BCLC stage. The management of patients with HCC should be discussed in multidisciplinary tumour board meetings on a case-by-case basis to be more effective

    Transposable element populations shed light on the evolutionary history of wheat and the complex co-evolution of autonomous and non-autonomous retrotransposons

    No full text
    Abstract Wheat has one of the largest and most repetitive genomes among major crop plants, containing over 85% transposable elements (TEs). TEs populate genomes much in the way that individuals populate ecosystems, diversifying into different lineages, sub-families and sub-populations. The recent availability of high-quality, chromosome-scale genome sequences from ten wheat lines enables a detailed analysis how TEs evolved in allohexaploid wheat, its diploids progenitors, and in various chromosomal haplotype segments. LTR retrotransposon families evolved into distinct sub-populations and sub-families that were active in waves lasting several hundred thousand years. Furthermore, It is shown that different retrotransposon sub-families were active in the three wheat sub-genomes, making them useful markers to study and date polyploidization events and chromosomal rearrangements. Additionally, haplotype-specific TE sub-families are used to characterize chromosomal introgressions in different wheat lines. Additionally, populations of non-autonomous TEs co-evolved over millions of years with their autonomous partners, leading to complex systems with multiple types of autonomous, semi-autonomous and non-autonomous elements. Phylogenetic and TE population analyses revealed the relationships between non-autonomous elements and their mobilizing autonomous partners. TE population analysis provided insights into genome evolution of allohexaploid wheat and genetic diversity of species, and may have implication for future crop breeding

    Pt-Ni carbon-supported catalysts for methanol oxidation prepared by Ni electroless deposition and its galvanic replacement by Pt

    No full text
    Pt-Ni particles supported on Vulcan XC72R carbon powder have been prepared by a combination of crystalline Ni electroless deposition and its subsequent partial galvanic replacement by Pt upon treatment of the Ni/C precursor by a solution of chloroplatinate ions. The Pt-to-Ni atomic ratio of the prepared catalyst has been confirmed by EDS analysis to be ca. 1.5:1. No shift of Pt XPS peaks has been observed, indicating no significant modification of its electronic properties, whereas the small shift of the corresponding X-ray diffraction (XRD) peaks indicates the formation of a Pt-rich alloy. No Ni XRD peaks have been observed in the XRD pattern, suggesting the existence of very small pockets of Ni in the core of the particles. The surface electrochemistry of electrodes prepared from the catalyst material suggests the existence of a Pt shell. A moderate increase in intrinsic catalytic activity towards methanol oxidation in acid has been observed with respect to a commercial Pt catalyst, but significant mass specific activity has been recorded as a result of Pt preferential confinement to the outer layers of the catalyst nanoparticles. © 2012 Springer-Verlag Berlin Heidelberg.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Abstracts From The 3Rd International Severe Asthma Forum (Isaf)

    No full text
    PubMe
    corecore