94 research outputs found

    Is high-density amorphous ice simply a “derailed” state along the ice I to ice IV pathway?

    Get PDF
    The structural nature of high-density amorphous ice (HDA), which forms through low-temperature pressure-induced amorphization of the “ordinary” ice I, is heavily debated. Clarifying this question is important for understanding not only the complex condensed states of H2O but also in the wider context of pressure-induced amorphization processes, which are encountered across the entire materials spectrum. We first show that ammonium fluoride (NH4F), which has a similar hydrogen-bonded network to ice I, also undergoes a pressure collapse upon compression at 77 K. However, the product material is not amorphous but NH4F II, a high-pressure phase isostructural with ice IV. This collapse can be rationalized in terms of a highly effective mechanism. In the case of ice I, the orientational disorder of the water molecules leads to a deviation from this mechanism, and we therefore classify HDA as a “derailed” state along the ice I to ice IV pathway

    Alarming rates of virological failure and HIV-1 drug resistance amongst adolescents living with perinatal HIV in both urban and rural settings: evidence from the EDCTP READY-study in Cameroon

    Get PDF
    Objectives: Adolescents living with perinatal HIV infection (ALPHI) experience persistently high mortality rates, particularly in resource-limited settings. It is therefore clinically important for us to understand the therapeutic response, acquired HIV drug resistance (HIVDR) and associated factors among ALPHI, according to geographical location. Methods: A study was conducted among consenting ALPHI in two urban and two rural health facilities in the Centre Region of Cameroon. World Health Organization (WHO) clinical staging, self-reported adherence, HIVDR early warning indicators (EWIs), immunological status (CD4 count) and plasma viral load (VL) were assessed. For those experiencing virological failure (VF, VL â‰Ą 1000 copies/mL), HIVDR testing was performed and interpreted using the Stanford HIV Drug Resistance Database v.8.9-1. Results: Of the 270 participants, most were on nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens (61.7% urban vs. 82.2% rural), and about one-third were poorly adherent (30.1% vs. 35.1%). Clinical failure rates (WHO-stage III/IV) in both settings were < 15%. In urban settings, the immunological failure (IF) rate (CD4  < 250 cells/ÎĽL) was 15.8%, statistically associated with late adolescence, female gender and poor adherence. The VF rate was 34.2%, statistically associated with poor adherence and NNRTI-based antiretroviral therapy. In the rural context, the IF rate was 26.9% and the VF rate was 52.7%, both statistically associated with advanced clinical stages. HIVDR rate was over 90% in both settings. EWIs were delayed drug pick-up, drug stock-outs and suboptimal viral suppression. Conclusions: Poor adherence, late adolescent age, female gender and advanced clinical staging worsen IF. The VF rate is high and consistent with the presence of HIVDR in both settings, driven by poor adherence, NNRTI-based regimen and advanced clinical staging

    Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    Get PDF
    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.J.M.S. gratefully acknowledges funding from an internal graduate studentship provided by Trinity College, Cambridge, and from a U.K. Engineering and Physical Sciences Research Council Programme Grant (Grant No. EP/K004956/1). This work was primarily carried out using the Cambridge HPC facility (www.hpc.cam.ac.uk), and some additional calculations were performed using the ARCHER supercomputer through membership of the U.K. HPC Materials Chemistry Consortium, which is funded by EPSRC Grant No. EP/L000202.This is the author accepted manuscript. The final version is available from ACS via http://dx.doi.org/10.1021/acsami.5b0182

    Application of DMM Linearity to dc Volt Traceability

    No full text
    • …
    corecore