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Abstract 

We present an in silico study of the neuromorphic-computing behavior of the prototypical 

phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise 

changes in structural order in response to temperature pulses of varying length and duration are 

observed, and a good reproduction of the spike-timing-dependent plasticity observed in 

nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss 

of structural and chemical order, followed by delayed partial recovery upon structural relaxation. 

We also investigate the link between structural order and electrical and optical properties. These 

results pave the way toward a first-principles understanding of phase-change physics beyond 

binary switching. 
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Introduction 

The inexorable consumer demand for faster electronic devices is currently being met 

through the miniaturization of components. However, scaling down existing technologies is 

rapidly becoming impractical, due to fundamental size constraints imposed by current designs 

and materials, plus the limitations of lithographic processes.1 Without increasing the feature 

density (e.g. number of transistors) in a processing device, performance is set by the effective 

speed at which the device can perform its various operations.2 There has thus been a growing 

interest in alternative computing paradigms, including the co-location of memory and processing 

(non-von Neumann computing),3 and hardware implementations of the highly-connected and 

adaptable neural networks found in nature.2, 4, 30-34 

 The latter brain-inspired (“neuromorphic”) computing paradigm is currently one of the 

most actively explored, and holds much promise for applications requiring large-scale data 

analyses (so-called “big data”), robotics and intelligent autonomous systems.5 Traditional 

processor designs implement a small number of predefined arithmetic and logic operations in 

hardware, which then form the building blocks for more complex procedures developed in 

software. In contrast, neuromorphic circuits can automatically optimize the flow of input data 

through processing elements, implicitly recognizing underlying patterns and constantly evolving 

a model to adapt to changes over time. By mimicking the dense and highly-connected nature of 

biological synapses, brain-inspired computing potentially offers an order-of-magnitude 

improvement in performance and power consumption compared to existing processing 

technologies.2 

The key components in neuromorphic circuits are devices which can modulate the 

strength of connections between other components in response to changing input signals, 
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mirroring the function of biological synapses. Exposure to an input signal results in temporary 

changes in synaptic weight which rapidly decay back to the initial value - a behavior termed 

“short-term plasticity” (STP).6 Repeated exposure to similar input patterns brings about more 

permanent weight changes, leading to gradual increases or decreases, termed “long-term 

potentiation” (LTP) and “long-term depression” (LTD), respectively.7 This simple set of 

processes forms the basis of so-called Hebbian learning,8 a scheme widely used to interpret the 

response of animal neurons to electrical stimuli (e.g. Ref. 9). In this model, each synapse receives 

input from two sources, viz. a pre-synaptic and a post-synaptic neuron. Correlated activity spikes 

on these inputs lead to LTP or LTD, depending on the relative time delay between them, whereas 

uncorrelated inputs cause only short-lived changes through STP. This relation between signal 

correlation and the evolution of synaptic weight is referred to as “spike-timing-dependent 

plasticity” (STDP).10 

Prototype neural circuits have been demonstrated in the past using a wide variety of 

electronic switching technologies, including silicon transistors,5 memristors,2 and, more recently, 

resistive11 and phase-change random-access memory (PCRAM) devices.4 PCRAM seems to be a 

particularly good candidate,30 as it naturally exhibits the switching characteristics required for a 

reconfigurable interconnect through the fundamental nature of its operation. PCRAM is typically 

implemented as a binary memory, with digital information being encoded in the structure of a 

phase-change material (PCM), by switching it rapidly and reversibly between (meta)stable 

amorphous and crystalline phases with large contrasts in electrical resistance and/or optical 

reflectivity. However, both the amorphization and crystallization processes are analogue in 

nature, and so with careful selection of writing-current pulses, progressive changes in the 
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conductivity of a PCRAM cell can be effected, allowing it to function as an electronic synapse 

whose strength can be modulated with high precision. 

PCRAM is also a scalable technology, which is essential for practical array-level 

neuromorphic computing, where scalability and energy consumption are both important 

considerations. In this regard, PCRAM boasts a number of highly-desirable features, including a 

simple device structure, low power consumption, fast switching speed, and small feature size.12 

Synaptic operations requiring energies in the picojoule range have been achieved with PCM 

cells,4, 31, 32 while complete devices requiring <1 mW of power in operation have also been 

demonstrated.33 The main limitation on energy consumption is the (re)amorphization process, 

which requires a large energy input to melt a microscopic region of the cell by Joule heating, 

although this can be optimized in aggressively-scaled devices.24, 31 

Neuromorphic computing using PCM-based devices has been demonstrated by several 

groups. Suri et al. designed a neural network based on two PCM elements per synapse, in which 

the crystallinity, and hence conductivity, of one element contributes a negative weight to the 

output current, while the state of the other contributes positively.33 By avoiding the use of 

amorphization pulses in modulating the conductivity, the device power requirements were 

limited to a very low level. The authors were able to train their system to detect objects within 

images with a high success rate. A subsequent adaptation showed that a programming scheme 

based on binary switching could be used in place of “multilevel” analogue conductivity 

variation,34 simplifying device design and improving reliability. A prototype PCM chip that acts 

like a brain network of 913 neurons with 1,650,000 synapses between them has also been 

demonstrated by researchers at IBM.13 
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Kuzum and coworkers have similarly demonstrated a device which mimics the Hebbian 

learning seen experimentally in rat neurons.4, 9 In their implementation, a partially-crystalline 

starting state receives a steady stream of “pre-spike” pulses together with a variable “post-spike” 

pulse, representing inputs from two connected neurons. The pre-spikes come in two sets: one set 

are pulses which heat the PCM above its crystallization temperature, but whose duration is too 

short to induce significant structural ordering, while the second set are longer pulses which heat 

to below the crystallization temperature. If a post-spike overlaps with a pre-spike, the combined 

heating effect is sufficient to induce melt-quenching (former pulse set) or crystallization (latter 

pulse set), thereby decreasing or increasing the conductivity of the connection (depressing/ 

potentiating), respectively. The pre-spikes can be arranged in a staircase fashion, so that different 

post-spike timings lead to different degrees of conductivity change, and hence adjusting the 

amplitude, length and spacing of the input pulses allows the electronic synapse to display 

different characteristic responses to its inputs.  

In this work, we model in silico the behavior of a prototypical PCM in a neuromorphic-

computing scenario using ab initio molecular-dynamics (AIMD) simulations. Such first-

principles simulations have been shown to be a valuable tool in characterizing the microscopic 

behavior of PCMs during memory operation,15, 16, 18, 19 and thus could provide valuable 

information to complement ongoing research on their application in neuromorphic circuits. 

Whereas these simulations are presently limited to relatively small systems of ~100s of atoms 

(e.g. 25, 26) the use of quantum-mechanical calculations avoids the complexities of parameterizing 

(semi-)empirical force fields to reproduce the subtleties of the local structure of the elements in 

multicomponent PCM systems, and the behavior through the phase change, which is a complex 

task.35 We chose to model the scheme reported by Kuzum et al.,4 since the synaptic device 
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therein is based on a single PCM cell, and makes use of both amorphization and crystallization 

pulses to effect conductivity modulation, allowing us to investigate the feasibility of modeling 

both in our simulations. 

Our results show that a reasonable representation of spike-timing dependent plasticity can 

be achieved in AIMD simulations, with stepwise changes in the material structural order being 

observed in response to multiple thermal stimuli of different time durations and amplitudes. 

Structural ring-based and chemical-order analyses reveal the phase-change kinetics in the PCM 

and the microscopic changes in material order harnessed in neuromorphic-computing synaptic 

elements. We also model the effect of changes in structural order on the electrical and optical 

properties of our models. 

 

Methods 

We have performed AIMD simulations using the Vienna Ab initio Simulation Package 

(VASP) code.14 180-atom models were created in cubic supercells, with periodic boundary 

conditions, at a fixed density of 6.11 g cm-3. These constant-volume conditions were chosen to 

mimic the effectively constant-volume setup of typical PCM “sandwich” device structures; the 

density is the typical value used in AIMD simulations on GST,15-19 and is intermediate between 

the experimentally-measured amorphous and crystalline densities. We employed PAW 

pseudopotentials,20 treating the outer s and p electrons as valence electrons, in conjunction with 

the Perdew-Burke-Enzerhof (PBE) exchange-correlation functional21 and a plane-wave kinetic-

energy cut-off of 175 eV. The Brillouin zone was sampled at the Gamma point. The temperature 

in the MD simulations was controlled using a Berendsen thermostat,22 and a timestep of 5 fs was 

used to propagate the dynamics. 
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For more detailed electronic-structure and optical-property calculations, the structures 

obtained from the MD simulations were used without ionic relaxation. The plane-wave cut-off 

was increased to 500 eV in these calculations, and a denser 4x4x4 Gamma-centered Monkhorst-

Pack k-point mesh36 was used for Brillouin-zone sampling. The number of bands was also 

increased to 1728 (triple the default) to ensure the convergence of the sum over empty states 

when calculating the optical properties using the linear-response routines in VASP. 

We prepared an initial starting configuration for the neuromorphic-computing 

simulations as follows. An amorphous structure was generated by a melt-quench procedure 

similar to that typically used in other PCM simulations.15-17 An initial starting configuration was 

randomized at 3000 K for 20 ps, then equilibrated as a liquid at 1200 K for 40 ps. An amorphous 

model was then obtained by quenching to 300 K at a cooling rate of dT/dt = -15 K ps-1. We 

partially crystallized the amorphous model by annealing it at 500 K for 500 ps, which was 

sufficient for the number of fourfold rings in the model, a representative measure of structural 

order, to stabilize. Further simulations were then carried out on this final configuration, as 

described in the text. 

We quantified the structural order in our models by the number of fourfold rings, the 

building block of the metastable cubic crystal (rocksalt) form of GST, present. Fourfold rings 

were defined, as in Refs. 14, 15, by four atoms forming a closed path with a maximum bonding 

distance (here 3.5 Å), and with all four three-atom bond angles, plus the angle between the 

planes defined by two triplets of atoms, being a maximum of 20° from the ideal angles of 90° 

and 180°, respectively. As in e.g. Refs. 14, 17, we quantified the chemical order in our models in 

terms of the atomic bonding. An ideal rocksalt structure contains only Ge/Sb-Te heteropolar 

bonds, and thus could be viewed as being composed solely of [Ge,Sb]2Te2 fourfold rings. We 
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therefore classified the rings in our model based on their atomic composition, and the class of 

chemically-ordered rings in this definition would exclude those containing homopolar Ge-Ge, 

Sb-Sb and Te-Te bonds, as well as heteropolar Ge-Sb bonding. 

 

Results and Discussion 

We developed a temperature-pulse sequence to mimic in silico the STDP behavior 

emulated by the PCM-based devices reported by Kuzum et al.4 (Figure 1). The pre-spike base 

sequence for the depression consists of a staircase arrangement of 5 ps temperature pulses of 

600, 610 and 635 K, interspersed with 40 ps rest periods at 300 K. These pulses were found to be 

of sufficient amplitude, but too short in duration, to induce significant crystallization. Three 

additional simulations were then performed to mimic post-spike pulses coincident with each of 

the three pre-spikes, modeled by increasing each of the pulse temperatures by 300 K to 900, 910 

and 935 K, respectively (Figure 1c). These pre/post-spike combinations heat the model above the 

experimental melting temperature of GST of around 900 K15. For the potentiation simulation, the 

pre-spike sequence consists of a train of 50 ps pulses at 375, 335 and 310 K, again interspersed 

by 40 ps rest periods. These pulses are of sufficient length, but have too low an amplitude, to 

induce crystal growth; however, in an analogous manner to the depression sequence, coincident 

post-spike pulses of 300 K boost these heat pulses above the crystallization temperature of the 

material. 

Figures 1 d, e show the change in the number of fourfold rings in the model at the end of 

the sequence, averaged over the last 20 ps of the final rest period, relative to the value obtained 

from the base sequence with no post-spikes. As noted, these plots illustrate that the two pulse 

sequences yield a reasonable representation of the STDP characteristics of the device in Ref. 4.  
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As expected, post-spike pulses overlapping with different pre-spikes in the depression sequence 

lead to a reduction in the number of rings at the end of the simulation, reducing the degree of 

crystallinity in the model, which would in turn lead to a decrease in conductivity (e.g. by 

increasing the size of the amorphous regions separating crystallites). On the other hand, a post-

spike overlapping with a potentiation pulse gives rise to a growth in structural order, indicative 

of an increase in conductivity. There is a sharp fall-off in the (dis)ordering effect as the post-

spike occurs further away from the last pulse in the depression sequence or the first in the 

potentiation simulation, respectively, marking another characteristic of Kuzum et al.’s device, 

and of the biological system it was designed to emulate.9 

To investigate the effect of the degree of structural order in the initial state on the device 

behavior, and to verify our results on the partially-crystalline model using an alternative starting 

configuration, we further performed a depression simulation on an amorphous starting model, 

generated by annealing the as-quenched amorphous model at 300 K for 150 ps until the number 

of fourfold rings stabilized (see supporting information). We were able to reproduce a similar 

behavior to that shown in Figure 1 using one of the sequences we tested; however, in contrast to 

the simulations on the partially-crystalline model, the difference in the number of rings resulting 

from different post-spike timings was somewhat smaller, to the point that conductivity changes 

may not be noticeable in a working device.  

In the scheme modeled in this work, the key parameters controlling the response 

characteristics of the neuromorphic synapse are the pulse length and temperature. The effects of 

various single pulse lengths and amplitudes on the structural order in our partially-crystalline 

model were therefore independently investigated (Figure 2). We found that the low-temperature 

annealing of the melt-quenched amorphous model prior to the neuromorphic simulations led to 
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the formation of a small stable crystalline cluster (Figure 2c, top), which could subsequently be 

grown proportionately in response to heat pulses of varying amplitude and duration (Figures 2a, 

b). 

For this model, the operating range for the pulse length was found empirically to be 5-50 

ps. We note that this is a much shorter timescale than the nanosecond pulses typically employed 

in current PCM-based devices,23 which we attribute to the much smaller size of our model, plus 

possibly discrepancies between the temperatures used in our simulations and the effective 

temperatures induced by Joule heating from the low-voltage pulses applied in PCM-based 

neuromorphic devices.4 On the other hand, switching at aggressively-scaled device sizes24 and on 

sub-nanosecond timescales25 have both been demonstrated experimentally, and thus we interpret 

these pulse lengths as being a possible lower bound for the speed of operation of optimized 

devices, i.e. nanoscale PCM-based devices driven by ultrafast electrical (or laser) excitations. 

When applying a sequence of 50 ps heat pulses with progressively-increasing 

temperatures between 500 and 700 K (spanning the typical AIMD crystallization temperature of 

around 600 K15), the number of fourfold rings in the model increases with each pulse, and in 

proportion to the pulse amplitude. A similar phenomenon is observed when 700 K pulses with 

successively longer lengths are applied, although it can be seen that the induced structural 

ordering is rather more asymmetric with respect to pulse length, with the shorter pulses having 

relatively little effect on the structural order. Strikingly, these simulations suggest that the crystal 

growth may occur via a two-stage step-like process, whereby the heat pulse initially causes a 

reduction in the number of rings, followed by reformation of these ordered units and a 

subsequent growth, which occur both during the application of the pulse and at the beginning of 

the subsequent rest period at 300 K. It is worth noting, however, that the thermostat employed in 
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the simulations does not allow for temperature fluctuations, and this, in combination with the 

temperature being increased instantaneously on application of the heat pulses, rather than being 

ramped, may exaggerate the initial decrease in the ring count. 

While the atomistic processes occurring during the melt-quenching and crystallization of 

GST have been studied extensively,15, 16, 18, 26 melting and annealing simulations are typically 

performed with the system held at a fixed temperature, and with the simulations being run until 

completion. It is therefore of interest to characterize the temporal changes in structural and 

chemical order which occur during the simulated potentiation and depression sequences, in order 

to establish whether the material physics underpinning the progressive switching - in particular 

on the picosecond timescales and at the small length scales being explored in the present work - 

are different to those which underlie binary switching. Figure 3 shows the time evolution of the 

number of fourfold rings in our model during the four simulations in the depression sequence, 

together with the fraction of rings containing only Ge/Sb-Te bonds (i.e. no “wrong bonds”), 

which acts as a measure of the chemical order in the system.18 

 During the pre-spike sequence, without additional overlapping post-spike pulses, the 

number of fourfold rings in the model increases slightly following the second and third pulses, 

indicating that these background pulses are capable of inducing small structural changes. There 

is a concomitant small increase in chemical order, which suggests that the changes are due to 

structural relaxation, e.g. the annealing out of bonding defects formed during the rapid 

quenching, which were not removed during the pre-annealing treatment. 

As expected, all three pre/post-spike combination pulses lead to a large and sharp 

reduction in the ring count, equal to roughly 50 % of the base value; the magnitude increases 

with the amplitude of the pulse, but the difference is small, mirroring the relatively small 
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temperature differences between them. In contrast, however, the chemical disordering induced 

by the three pulses differs significantly, such that the three pre/post-spike combinations lead to 

quite different levels of chemical disorder. Strikingly, in the simulations where the post-spike 

overlaps with the first and second pre-spikes, significant structural relaxation occurs when 

subsequent pre-spike pulses are applied, leading to a regrowth of rings and a corresponding 

chemical ordering - this effect appears to make an important contribution to the differences in 

ring counts at the end of the four simulations (i.e. the final synaptic weight). 

A similar analysis of the potentiation sequence (see supporting information) shows that, 

in this part of the simulation, the dominant effect is simply the growth of structural order in 

response to the crystallization pulses; although the pulses do lead to a small dynamic disordering, 

the effect is much smaller than in the depression simulations, and it occurs only when the pulse is 

first applied, and is completely reversed by the beginning of the following rest period.  

 A previous study of the melting kinetics in GST17 proposed a melting mechanism in 

which a crystalline cluster first fragments into disconnected medium-range-ordered structural 

units, viz. planes and cubes of atoms, which subsequently break up into discrete fourfold rings, 

which themselves finally dissolve as the system melts. Based upon the present results, this can be 

extended to the progressive melting modeled in the depression sequence. Heat pulses above the 

melting temperature induce a ‘thermal shock’ in the material, breaking bonds and forming a 

significant concentration of defects (e.g. dangling bonds), most likely at the crystal-glass 

interface. The rapid quenching following the pulse leads to this disordered state being ‘frozen 

in’. Provided the disordered structures are metastable, insufficient thermal energy is available 

during the rest phases to facilitate the atomic diffusion required to remove them, at least not on a 

short timescale, whereas the short bursts of energy delivered by subsequent pre-spike pulses can 
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lead to a delayed reordering. This appears to be mediated initially by the annihilation of 

chemically-disordered (‘frustrated’) structural units, which spontaneously reform as ordered 

entities, and perhaps then act as an attachment site for additional atoms. 

This mechanism provides a natural explanation for the fact that we found the structural 

ordering in our model depended quite sensitively on the amplitudes of the pulses in the pre-spike 

sequence in the depression part of the simulation (see supporting information). We found it 

necessary to employ a significant amount of trial and error in order to obtain a sequence which 

mimicked the behavior of the device reported by Kuzum et al.,4 with the major difficulty being 

selecting pre-spike temperatures which did not induce significant structural ordering in isolation, 

but caused appreciable disordering when boosted by a post-spike pulse, and which, when 

boosted, also limited regrowth during the following rest period, and following other pre-spike 

pulses later in the sequence. Based on these results, then, the selection of pre- and post-spike 

heat-pulse sequences for depression represents a balance between inducing a measurable 

disordering in a short time when the two overlap, while simultaneously controlling the structural 

relaxation and delayed reordering which can arise from isolated pre-spike pulses. 

We stress again that these considerations will be most important in the regime of small 

device sizes and very short pulses. For longer pulse times and larger devices, it is reasonable to 

assume that the material may reach a (microscopic) equilibrium during the application of the heat 

pulses, which would minimize the effect of delayed reordering on the electrical characteristics. 

Moreover, we note that the difficulties which we experienced in selecting suitable pulse 

sequences most likely indicate that the size of our model may be close to the lower limit of what 

is appropriate for these simulations. Size effects would be much less prominent in larger systems, 

and the effect of model size on the behavior in simulations such as those in the present study may 
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represent important follow-up work - particularly if longer or more intricate pulse sequences are 

to be analyzed using similar methods. Despite these limitations, the present findings provide 

useful insight into the physics of ultrafast operation in nanoscale neuromorphic phase-change 

devices, and suggest that, as devices are scaled down, the operating window for the selection of 

suitable pulses to mimic a particular STDP response may narrow. 

In the present work, our focus has been on characterizing the structure of the models, 

with the degree of structural and chemical order being taken as a marker of the electrical/optical 

characteristics of the material. To confirm this relation, we computed electronic density of states 

(DoS) curves for each of the final configurations obtained at the end of the depression and 

potentiation sequences shown in Fig. 1, together with the optical reflectance, R, as a function of 

wavelength, both at the PBE level of theory. Fig. 4 shows the DoS near the Fermi energy, EF, of 

the two sets of models, along with the percentage change in reflectance relative to the respective 

reference sequences consisting of only pre-spike pulses. 

Both sets of DoS curves exhibit the commonly-encountered problem with (semi-)local 

DFT exchange-correlation functionals, viz. the absence of a clear energy gap between the 

valence and conduction states.37 It is difficult to identify any systematic trends among the 

depression-sequence curves. Sequences “B” and “C”, which lead to the largest degradation of 

structural order with respect to the reference sequence (“A”), appear to reduce the density of 

states near EF, which could reflect a drop in conductivity. However, the variation among all four 

sequences is subtle, which most likely indicates that the changes in structural order produced 

during the depression sequences do not have a large impact on the bulk electronic structure of the 

material. Among the crystallization sequences, sequence “T”, which leads to a significant 

structural ordering, appears to lead to a correspondingly marked shift in the valence and 
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conduction-band edges to higher energies, which is suggestive of a possible increase in 

conductivity due to the enhanced crystallinity. Sequences “U” and “V”, which lead to relatively 

little change in structural order with respect to the reference simulation, lead to rather less 

marked changes in the respective DoS curves. 

 Similar phenomena are broadly evident in the reflectance curves. Comparing Figs. 1 (d) 

and 4 (c), a reduction in the ring count with respect to the reference model appears to lead to 

fairly small changes in reflectance, at least when set against the changes which occur as a result 

of the potentiation sequences, which is consistent with the similarly small changes in the DoS.  

On the other hand, according to the results in Fig. 4 (d) the growth of the ordered cluster during 

potentiation leads to a decrease in reflectivity in the wavelength range between ~150-300 nm, 

and an increase from 300-800 nm. Interestingly, when compared against Fig. 1 (e), the ordering 

of the reflectivity changes is consistent with the changes in structural order which result from the 

three potentiation sequences with overlapping post spikes. 

 For completeness, calculated electrical-conductivity tensors, obtained from a semi-

classical model for band transport, are given in the supporting information. However, for reasons 

discussed therein, accurate modeling of the electrical conductivity remains a significant 

challenge to first-principles calculations at present, and as a result of these limitations, the results 

are unlikely to be reliable, and we therefore do not discuss them here. 

 Finally, two other questions of significant interest are those of the number of discrete 

resistance states achievable in ultra-scaled PCM cells, and also the stochasticity of the switching 

process. Although we have not sought specifically to investigate the former in this study, from a 

structural-order perspective, the results presented in Fig. 2 suggest that ~4 discrete levels 

between a partially-crystalline starting state and a fully-crystalline final state could be achieved 
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through crystallization pulses. In principle, additional resistance levels could be achieved 

through amorphization, but the difficulties we experienced in optimizing the pulse sequences for 

this purpose, and the apparently lower contrast between different levels of amorphization with 

respect to a partially-crystalline reference state, suggest that this may be more difficult to control. 

Having only performed a limited number of simulations of our chosen pulse sequence, we do not 

have sufficient statistics to investigate quantitatively the stochasticity of the switching. Indeed, 

the difficulty of repeating simulations a large number of times represents one of the current 

limitations of AIMD modeling in general. We were able to obtain similar qualitative structural-

ordering behavior in depression simulations starting from both a partially-crystalline and an 

amorphous model (c.f. Fig. 1; see also Fig. S5), which suggests that the characteristic response of 

an ultra-scaled synapse could be reliably reproduced against variation in the initial state of the 

PCM, whereas the absolute values of e.g. the conductivity may be more variable. Stochasticity of 

switching may therefore become an increasingly important issue as devices are scaled down, and 

is something which merits further investigation. 

 

Conclusion 

In summary, we have modeled in silico the response of the prototypical phase-change 

material, GST, to a pulsed time-temperature profile, which is key to its application to PCM-

based neuromorphic computing. A very good demonstration of spike-timing dependent plasticity 

was achieved, with a stepwise increase in the material order in response to multiple heat pulses 

of different lengths and heights. Structural and chemical-order analyses reveal the phase-change 

kinetics in GST and the microscopic changes in material order which are harnessed in synaptic 

elements. We have also established a link between the degree of structural order in the materials 
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and the resulting variation in electronic and optical properties, although further work on 

calculating these properties more accurately is required. This study could provide a pathway for 

the development of neuromorphic-computing simulation tools which can readily identify suitable 

next-generation PCMs and rapidly optimize state-of-the-art device performance. Moreover, the 

demonstration that first-principles calculations and simulations can potentially be used to study 

the response of a material to intricate temperature variations suggests that similar methods to 

those employed here might be used to investigate related phenomena, e.g. the arithmetic and 

logic devices demonstrated experimentally in other studies.3, 27, 28  
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Figures 

 

Figure 1. In silico emulation of spike-timing-dependent plasticity (STDP) in a partially-

crystalline model of Ge2Sb2Te5. The schematic in (a) illustrates the process adopted for the 

simulations of depression (left) and potentiation (right); in both, a post-spike pulse overlapping 

with one of a sequence of pre-spikes yields a combined pulse temperature which depends on the 
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post-spike timing. Plots (b) and (c) show the depression and potentiation heat-pulse sequences, 

respectively, adopted to mimic the STDP behavior modeled by the device reported by Kuzum et 

al.4 Within each regime, four simulations were performed (marked A-D and S-V in (b) and (c), 

respectively): in the first, the material is subject to only the staircase of pre-spike pulses (A/S), 

while in the other three, a coincident post-spike pulse boosts one of the three pre-spikes by 300 K 

(B-D/T-V). Plots (d) and (e) show the change in the number of fourfold rings in the model at the 

end of the sequence, averaged over the last 20 ps of the final rest period, relative to the value 

obtained from the pre-spike sequence with no overlapping post-spikes. The decay in the 

(dis)ordering effect as the post-spike occurs further from the time zero (the end of the depression 

and start of the potentiation, respectively) is a feature of the rat neurons studied by Bi and Poo,9 

which was incorporated into the neuromorphic circuit developed in Ref. 4. 
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Figure 2. Heat-pulse-induced structural ordering in a simulated partially-crystalline model of 

Ge2Sb2Te5. Plot (a) shows the effect of a sequence of 50 ps temperature pulses with successively 

larger amplitudes (top) on the number of fourfold rings present in the model (bottom). Plot (b) 

has the same layout, and shows the effect of varying the temperature-pulse duration with a fixed 

amplitude of 700 K. The snapshots of the model in (c) are taken from the middle of the rest 

periods marked A, B and C in plot (a), and A, D, E and F in plot (b), and show the progressive 

growth of an initially small crystalline cluster. Atoms forming parts of fourfold rings are colored 

purple, and the color coding of the other atoms is as follows: Ge - blue, Sb - red, Te - green. 

These snapshots were prepared using the VMD software.29 
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Figure 3. Evolution of the structural and chemical order in a model of Ge2Sb2Te5 during a 

simulated depression heat-pulse sequence. The top row of plots shows the temperature-time 

profiles of the four parts of the simulation, modeling (from left to right): the pre-spike sequence 

with no overlapping post-spike (A), and the same sequence with post-spike pulses coincident 

with the first (B), second (C) and third (D) pre-spikes. The second row shows the corresponding 

time evolution of the number of fourfold rings in the model, which is an indication of the level of 

structural order. The bottom row of plots shows the fraction of the rings which contain only 

chemically-correct Ge/Sb-Te bonds, employed here as a measure of the degree of chemical order 
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in the model. Snapshots from sequence B at the time points marked I, II and III, taken before, 

during and after a pre-spike, respectively, are shown at the bottom of the figure, and illustrate the 

dynamic disordering induced by the pulse. The color coding of the atoms in these snapshots is as 

in Figure 2, and the images were prepared using VMD.29 
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Figure 4 Electronic structure and optical properties of the final configurations of the models 

obtained from the depression (a, c) and potentiation (b, d) pulse sequences shown in Fig. 1, 

calculated at the PBE level of theory. The labeling and line colors have been chosen to be 

consistent with those in Fig. 1. Plots (a) and (b) compare the electronic densities of states near 

the Fermi energy (EF), while plots (c) and (d) compare the simulated reflectance as a function of 

wavelength, expressed relative to that of the reference configuration with only the background 

pre-spike pulse sequence applied to it (labeled A and S in the depression and potentiation 

sequences, respectively). 
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Supporting Information. Includes data from the various pulse sequences tested during the 

optimization of the depression and potentiation sequences discussed in the text, an analogous 

figure to Fig. 3 for the potentiation simulation, data from a depression simulation on an 

amorphous starting model, and the calculated conductivity tensors to accompany the data in Fig. 

4. The Supporting 553 Information is available free of charge on the ACS Publications website at 

DOI: 10.1021/acsami.5b01825. 
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