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Abstract
Nitric oxide (NO) is often used for the passivation of SiC/SiO, metal oxide
semiconductor (MOS) devices. Although it is established experimentally, using
XPS, EELS, and SIMS measurements, that the 4H-SiC/Si0O, interface is exten-
sively nitridated, the mechanisms of NO incorporation and diffusion in amor-
phous (a)-SiO, films are still poorly understood. We used density functional
theory (DFT) to simulate the incorporation and diffusion of NO through a-
Si0, and correlate local steric environment in amorphous network to interstitial
NO (NOy) incorporation energy and migration barriers. Shapes and volumes of
structural cages in amorphous structures are characterised using a methodol-
ogy based on the Voronoi S-network. Using an efficient sampling technique
we identify the energy minima and transition states for neutral and negatively
charged NO; molecules. Neutral NO; interacts with the amorphous network
only weakly with the smallest incorporation energies in bigger cages. On the
other hand NO; ' binds at the network sites with wide O—-Si—O bond angles,
which also serve as the intrinsic precursor sites for electron trapping.

Keywords: semiconductor, nitric oxide, Voronoi—Delaunay, 4H-silicon carbide
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(Some figures may appear in colour only in the online journal)
1. Introduction

Silicon Carbide (SiC) is a wide band gap semiconductor with great potential for high power
and frequency applications in MOSFET devices. [1] Amorphous (a)-SiO, is the native oxide
of SiC and is often used as a gate oxide in such devices. Applications of SiC based MOSFETs
are hampered by a high concentration of interface defects [1]. High temperature anneal in NO
gas is often used to passivate defects in SiC/a-SiO, devices. This has been shown to reduce
the density of interface defects by around 99% [2, 3]. The NO molecule is thought to passivate
defects (e.g. O vacancies, C dangling bonds and C—C clusters which result from the oxidation
process [4, 5]) in the near interface region through nitridation and does not penetrate deep into
the SiC [6]. The specific mechanism of passivisation is unknown but it is thought that the NO
makes bonds [7] with defects and shifts or removes harmful defect levels in the a-SiO, band
gap [2]. However, the diffusion mechanism by which the NO molecule negotiates the oxide
network to reach the near interface region remains unknown.

How small molecules interact with an amorphous silica network and migrate through the
network can be addressed at an atomistic level using computer simulations. However, mod-
elling amorphous materials requires extensive statistics as they contain a vast number of local
environments compared to their crystalline counterparts. A widely accepted approach to model
amorphous SiO; relies on using periodic super-cells and molecular dynamics (MD) to simulate
a melt and quench procedure (see e.g. references [8, 9]). This procedure creates a disordered
continuum random network and has been used to great success in the identification of the
structural and defect properties of a-SiO; [9, 10]. However, probing statistically meaningful
number of molecular configurations in amorphous structure requires either using a large num-
ber of small structures or very big (million atom) cells. The latter is possible only using classical
inter-atomic potentials (IPs).

Migration of small molecules through an amorphous network has been considered in several
previous studies. An extensive study of the migration of O, in the amorphous silica network
has been carried out using IPs fitted to model the interaction between SiO, and O, [11]. A
number of minima were found using first principle calculations and energy barriers between
them calculated using the IPs. The distributions of the minima, highest and lowest barriers
and the saddle points associated with them were determined. The saddle points have energies
between 0 and 5 eV with the modal peak just above 1 eV. This study provides some useful clues
as to how small nitrogen containing molecules can behave in a-SiO; in the neutral charge state.
In addition, the NO molecule can become negatively charged close to the SiC/SiO; interface via
electron transfer from SiC, by analogy with the Mott—Cabrera mechanism of silicon oxidation
[12].

The incorporation and diffusion of NH, N, NO, N in a-quartz has been modelled in refer-
ence [13] using DFT. For NO the literature shows that in the neutral and positive charge states
there is no electrostatic interaction with the lattice. However, in the negative charge state the
NO interacts with two nearest silicon atoms electrostatically, without charge transfer between
the N and the Si.

Simulations of the incorporation and diffusivity of nitridating species in the amorphous
phase used 72 atom cells of a-SiO, [14]. Bakos ef al [14] have shown that NO is mobile in
both the neutral and negative charge states and suggested that diffusion may slow down if
the NO were to become negative, due to the increased electrostatic interaction with the lattice.
However, no correlation of the steric environment of the amorphous oxide and the incorporation
energy was found.
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Here we build upon the previous experimental and theoretical work to analyse the incor-
poration and diffusion of NO in a-SiO; using DFT simulations. We aim to elucidate how
the incorporation energies and migration barriers of neutral and negatively charged NO
molecules correlate with the structural characteristics of local environment such as cage and
ring sizes.

2. Methodology

An ensemble of 30 a-SiO, structures was produced by performing classical molecular dynam-
ics (MD) melt-quench simulations on 216-atom periodic cells of bulk SiO, using the method
outlined by Patel et al [15]. Briefly, the MD melt-quench was performed with the ReaxFF force
field implemented in the LAMMPS code [16, 17], using an NPT ensemble and a cooling rate
of 6 Kps~'. The ion positions and lattice vectors of the MD structures were then relaxed using
the DFT as implemented in CP2K using the PBEO-TC-LRC functional [18—21] with a 2 A
truncation radius and 25% Hartree—Fock exchange. The DZVP-MOLOPT basis set and a con-
verged plane wave cut-off of 550 Ry were used. The efficient calculation of exchange integrals
was facilitated by application of the ADMM approximation [22]. The models generated by this
procedure have densities ranging between 2.100 g cm ™~ and 2.286 g cm .

A single 216-atom periodic cell with a density approximately equal to the mean density of
the parent population (2.2 g cm~3) was selected for further studies. All sites present in this
structure were then sampled using the scheme shown in figure 1. A sampling grid of initial
positions of NO was created by taking the centre point between 3 out of the 4 oxygen atoms
forming all faces of each 72 SiO, tetrahedra. NO molecule is then placed along the vector
between the mid-point of the face and the Si-atom at the distance equal or greater than 1.5 A
away from the network atoms and the Si atom (see red arrow in figure 1). Placing the molecule
with N or O towards the Si atom does not change the results. Placing the molecule at dis-
tances < 1.5 A leads to unphysical network relaxation and if the NO is placed further away, the
adjacent grid points become too close to one another hence reducing sampling.

This procedure results in 187 initial configurations. The atomic positions of these structures
are relaxed in the neutral and negative charge states using the DFT setup described above.
The calculations of N O,-_l were carried out in the triplet state. This is shown to be the ground
state and is in agreement with the previous work [13, 14]. The NO incorporation energy into
amorphous network is then calculated using the standard formalism by Northrup and Zhang
(23],

Ef - Eds - Ebulk - Zns,us + q(Ev + ,ue); (1)

s

where Eg; is the energy of the system with incorporated NO, Ey is the energy of the perfect
system, (i, is the chemical potential of NO, E, is the energy of the valence band maximum,
1 1s the Fermi level position and ¢ is the defect charge. We apply the Lany—Zunger charge
correction to the calculations done in the negative charge state [24]. As the chemical potential
we use the total energy of NO molecule in the gas phase at 0 K.

The relaxed configurations of the NO interstitial (NO;) then give initial and final states for
diffusion trajectories calculated using a climbing image nudged elastic band (CI-NEB) method
implemented in the CP2K code [25]. These trajectories were then classified by analysing
the steric crowding at the transition state usually situated at the centre of a ring. The usual
definition of a ring in a-SiO; network is denoted by the number of Si—O units [26—28]. As
we show below, the minima for the geometry optimisation of NO; are a set of cages such

3
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1.10A

Figure 1. A schematic representation of the sampling scheme. The green triangle repre-
sents the face of the SiO, tetrahedra being sampled, the red arrow represents the vector
between the Si and the N and the black arrow represents the vector between the N and
the O which is 1.1 A away from the N atom. Colour coding: Si in yellow, N in blue and
O in red.

as the one shown in figure 5. These cages are made up of rings and so to move between
them the molecule has to traverse these rings. The 6-member ring is the most prevalent [29],
so 4 trajectories were selected representing the range of possible 6-member ring geome-
tries, then 2 of both 5- and 7-member rings were probed using the same logic but in this
case bracketing the most and least strained variants. The distributions for cage volumes, ring
size, O-Si—O bond angles and Si—O bond lengths are given in the supplementary information
(https://stacks.iop.org/MSMS/29/035008/mmedia) (figures S1-S4 respectively).

Ring sizes smaller than 4 are not considered as they cause non-physical breakage of the
network on geometry optimisation and paths through them are not seen by the linear interpola-
tion algorithm within CP2K. It should be noted that closed Si—O paths greater than 7 members
cannot be called bottlenecks within the system as they generally span the diameter of a cage.
By choosing a relaxed structure at either side of a ring, the minima are then connected in the
NEB calculations and the barrier calculated using the CI-NEB method. It should be noted that
this limited sampling is aimed to probe the structural motifs the NO molecule might encounter
on its journey to the interface.

In order to identify the above mentioned cages, we have used a methodology based on the
Voronoi S-network, which is a generalization of the Voronoi—Delaunay tessellation for mul-
ticomponent systems [30—33]. This approach has been used in the past to identify regions of
empty space in semiconducting alloys [34], to study density fluctuations in supercooled liquids
[35-37] and even to investigate proton diffusion in water [38]. The relevant methodological
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Figure 2. The formation energy distribution of the neutral and negative interstitial. Both
show a range of around 3 eV. Neutral charge state in blue and negative charge state in
orange. All formation energies are referenced to the valence band edge of the cell of
a-Si0; used in the sampling and are stated at this Fermi level position.

details can be found in references [30, 35]; for the purposes of this discussion it is important to
note that the size distribution of the cages—and indeed, broadly speaking, the identification of
empty space within disordered systems such as amorphous solids—is not unique. The method-
ology we have used relies chiefly on two parameters, Rp and Rp (see reference [35]), which
determine the minimum size of the cage and the minimum contact area between two cages
to be considered as one, respectively. Thus, we have verified that different choices in terms of
either Rp or R do not impact any the qualitative trends reported in section 3.1. Importantly, our
methodology provides direct access to the volume of the cages and it allows to unequivocally
assign a given cage to an interstitial NO molecule.

3. Results

3.1. Interstitial NO configurations

In the neutral charge state, the geometry relaxation of NO in a-SiO, demonstrates that the
NO molecules are accommodated in cage like structures. The extensively sampled silica peri-
odic cell gave a range of incorporation energies from —0.05-3.1 eV (see figure 2). The
negative incorporation energy comes from a small attractive dipole interaction between the
partially negative N and a partially positive network Si. We note that previous calculations
in a-quartz have shown that there is an energetic cost of around 3.5 eV for the incorpora-
tion of O, [11]. This has been attributed to the smaller cage volumes (33 A3) in the material.
[11] This has been used to understand why interstitial O, has not been observed in a-quartz.
In a-SiO,, however, the distribution of cage volumes ranges from approximately 25 A’ to
250 A3, with an average of around 65 A3 [11, 39]. In the amorphous phase the incorporation
energy of O, drops to almost 0 eV in the largest of these cages [11]. Since NO and O, are
similar in many ways, one can expect similar results. The distribution of NO incorporation
energies in the neutral charge state is shown in blue in figure 2. The three peaks in this dis-
tribution can be qualitatively linked to the size of the cage in which NO? resides. It shows

5
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Figure 3. The highest (squares) and lowest (triangles) incorporation energies for inter-
stitials that are found in the cages as determined by the Voronoi—Delaunay tessellation
analysis. This energy dependence is based on the orientation of the molecule with respect
to the cage.

Figure 4. Two examples of the cage structures that form the minima in the exhaustive
sample and the lowest [(a) and (c)] and highest [(b) and (d)] energy NO interstitials for
both cages. The asphericity delta value for each of these cages is 0.22 [(a) and (b)] and
0.01 [(c) and (d)]. The difference in incorporation energy for each of the cages is 0.19 eV
[(a) and (b)] and 0.06 eV [(c) and (d)]. Colour coding Si yellow, N blue and O red.

that the larger the cage the lower the relative energy of the NO?, similar to the conclusions
drawn for O,.

Figure 3 shows the lowest and highest energy minima that were captured by the
Voronoi—Delaunay analysis. The method finds that there is an inverse correlation in the incor-
poration energy of the NO with respect to the volume of the cage. The shape of a cage in which
NO is situated and the orientation of the molecule are important factors when determining the
incorporation energy. When the long axis of the NO molecule is aligned with the long axis
of the cage (figures 4(a) and (c) ) the incorporation energy is lower than when these axes are
perpendicular to one another (figures 4(b) and (d)). This clearly means that the free space in
the network is not spherical as this would result in no orientation dependence.

6
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Figure 5. An example of the cage structures that form the minima in the exhaustive
sample. The blue surface is found using the cage analysis software detailed above. The
green line signifies 2 interlinking rings that make up the cage and so the NO has to move
through to progress from cage to cage. Colour coding Si yellow and O red.

Al

Figure 6. The majority interaction of the NO™. The N interacts with the SiOy tetrahe-
dron, akin to the negative NO in the literature, flattening a face of the tetrahedron. Color
coding is the same as figure 5.

The asphericity delta is a value that describes how spherical a cage is. Figure 4 shows two
of the cages found in the analysis. The cages in figures 4(a) and (b) have delta values of 0.22
and are less spherical than the cages in figures 4(c) and (d) (delta = 0.01). The incorporation
energy difference between the highest and lowest energy interstitial in the more spherical cages

7
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is 0.06 eV and the less spherical cages is 0.19 eV. The higher energy interstitials have a mis-
alignment of the long axes of the molecules (parallel to the N-O bond) with cage axes, but for
more spherical cages the energy penalties are lower.

3.2. NO~ incorporation

The 0/-1 charge transition level of the NO interstitial is located at an average of 4.35 eV above
the valence band of a-SiO,. The Fermi level of the SiC/a-SiO, device is in the centre of the
a-Si0, band gap (=4.5 eV above the valence band of a-SiO,) which means that NO; may
become negatively charged as soon as there is an electron available. For example, at distances
below ~2 nm from the SiC/a-SiO, interface electrons can tunnel from the SiC valence band
or conduction band to the NO at reasonable rates. Therefore, one can expect the presence of
NO; near the interface.

In the negative charge state, the incorporation energies of NO; range between 2.05 and
5.75 eV (figure 2 orange) when calculated at the valance band. This is due to the electrostatic
interaction between the NO; and the network. In the majority of cases the nitrogen of the NO;
is located around 2 A from a network silicon (figure 6). This is similar to the Si—N distance
found in the literature [13]. The electrostatic interaction is accommodated by the flattening of
the face of an SiOy tetrahedra (figure 6). This occurs by the oxygen atoms moving into the
plane of the Si. The NO; molecules in these minima have a closer Si—N distance than in the
neutral charge state, due to the extra electrostatic interaction with the network.

Yet another configuration is formed when NO; comes across a wide O—Si—O bond angle
site (see figure 7). It has been shown in reference [40] that sites with an O—Si—O bond angle
greater than 132° can trap electrons in strongly localized states located deep in the band gap.
The fully optimised a-SiO, structures considered here are denser and have a more narrow
O-Si-O angle distribution than those studied in reference [40]. The spontaneous electron
trapping in these structures takes place at precursor sites with O—Si—O angles exceeding 119°.
Such sites represent the tail of the bond angle distribution for a-SiO,. NO; ™ ions strongly inter-
act with the Si of the wide bond angle site, with a Si—N distance of 1.5 A. Figure 7 shows that
the spin density in this configuration is mostly localized on the NO; , with is a small amount
on the network atoms.

3.3. NO diffusion

Continuum random network a-SiO, structures are often characterized by so called ring statis-
tics (see e.g. [29]). These are defined as closed paths of some number of Si—O bonds (or Si
atoms) for which it is also true that there is no other path between any pair of atoms in the
ring which has fewer bonds than the shorter path between them along the ring. Such closed
structures with 5, 6 and 7 Si—O units (example highlighted in blue in figure 8(c)) have been
shown to be the three most prevalent ring sizes in a-SiO;.

Figure 5 shows that the cages found by the analysis method described above can be viewed
as made up of interlinked rings. We hypothesized [41] that the NO molecule must traverse
these rings in order to diffuse through the network to the interface. Therefore we calculate the
barriers to pass through the rings to find the path of the NO through the a-SiO; network. The
stable NO positions described in the previous section are used as the start and end points of the
NEB calculations. These positions in cage structures are between 3 and 5 A apart with a ring
near the middle of the migration path.

The barrier height for migration depends on the size of the ring. The energetic barrier for
migration through a ring increases with decreasing ring size as shown in figure 9, but there are

8
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/ —

I’

Figure 7. The geometry and spin density of the interaction between NO and sites with
0O-Si-0 bond angles of greater than 119°. Color coding same as figure 5.

large variations between barriers through rings of the same size caused by differences in the
steric environment of each ring. This is discussed in more detail in reference [41].

We observe large variations in the migration barriers. There is less space for migration
through 5 and 6 member rings and a large energetic difference between these ring sizes.
Figures 8(a) and (b) show the initial and transition states for migration through the 6 mem-
ber ring. The ring distortion in the transition state can be characterized by a breathing motion,
where the largest change in Si—O bond length is from 1.62 A to 1.64 A. For the transfer through
the 5 member ring (figures 8(c) and (d)) there is still a breathing mode but the distortion is even
more drastic, with the largest change in bond length being from 1.64 A to 1.71 A. This is caused
by the further decreased free space and reduced diameter of the ring and results in the increased
barrier for migration [42].

For NO; !, there is a greater increase in the barrier height through the 5 and 6 member rings
(figure 9). Again, one can link this to the distance between the NO; ! and the network atoms.
There is a decrease in the distance between the NO, ' molecule and the network and so the
interaction is stronger causing a more drastic increase in the barrier for migration with respect
to the NO;.

Migrations through 7 member rings have the lowest barriers and show little variation
between charge states. This scenario has the lowest barrier as there is the largest amount of
free space along the migration path. In the neutral charge state this means that the NO has a
smaller number of network atoms to repel. In the negative charge state, the abundance of free
space means that NO; is further away from the network ions and so has weaker electrostatic
interactions with the network.
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Figure 8. The changes in bond length between a 5 and 6 membered ring transition. The
blue line in (a) and (c) illustrates the definition of ring used in this work. Reproduced
with permission from [41]. [© 2019 by Trans Tech Publications Ltd.].
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Figure 9. Barrier heights of 5, 6 and 7 membered rings in a-SiO; in the neutral (triangles)
and negative (squares). The average increase in barrier height from neutral to negative
is 0.2 eV.

4. Conclusions

We used DFT simulations to study the interaction and diffusion of NO; molecules in the neutral
and negatively charged states in a-SiO,. In both cases the molecule resides in cages of the
amorphous network. The cages have different shapes characterised by the asphericity delta
value. The more spherical the cage the less the energy dependence on the molecular orientation
within the cage. The NO; interacts stronger with the wide O—Si—O bond angle (> 119°) sites
characteristic to strained environments of the smaller cages and their surrounding areas in

10
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the oxide. We observe the correlation between NO migration barriers and size of the rings
connecting the network cages. There is an increase in migration barrier as the number of Si—O
units in the ring decreases. In other words, the NO will prefer diffusion paths with the largest
amount of free space as these give rise to the lowest barriers. The same can be said for the
negative charge state. We note that the amount of free space approaching the interface, with the
mass density of the oxide increasing from 2.2 g cm 2 in the bulk to 2.4 g cm 2 in the interface
region, decreases [42]. This, coupled with the extra electrostatic interactions, suggests that NO
migration rate can decrease significantly in the near interface region.
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