55 research outputs found
Solid-state synthesis and physico-chemical characterization of modified smectites using natural clays from Burkina Faso
Solid-state intercalation was applied to prepare organo-smectites using cationic surfactants and natural clays containing smectite at various surfactant/smectite ratios. The surfactants enter the interlayers of smectites causing a swelling of the clays. The used clays were collected in Siétougou and Diabari villages located in the eastern part of Burkina Faso. The solid-state intercalation was successful for all four surfactants applied, n-dodecyltrimethylammonium bromide, (n-C12H25(CH3)3NBr), n-tetradecyltrimethylammonium bromide, (n-C14H29(CH3)3NBr), n-hexadecyltrimethylammonium bromide (n-C16H33(CH3)3NBr) and di-n-dodecyldimethylammonium bromide ((n-C12H25)2(CH3)2NBr) at different levels of the cation exchange capacity (CEC). The synthesized organo-smectites were characterized regarding relative density, structural and textural properties. XRPD data showed a systematic increase of the basal spacing of the unit cell of the smectite up to >38 Å at 2.0-CEC loading of the surfactant. This increase indicates that the surfactants penetrated into the smectite interlayers with the surfactants being arranged parallel to the layers at low concentrations and almost perpendicular at high ones. FTIR spectra of the organo-smectites showed a decrease in the intensities of the water bands at around 1630 cm-1 and 3400 cm-1, and new specific bands close to 2920 cm-1 and 2850 cm-1 were assigned to the asymmetric and symmetric stretching of CH2 groups of the surfactants, respectively.
KEY WORDS: Smectite, Organo-smectite, Surfactant, Intercalation
Bull. Chem. Soc. Ethiop. 2021, 35(1), 43-59.
DOI: https://dx.doi.org/10.4314/bcse.v35i1.
an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
© Copyright owned by the author(s). MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities
Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine.
BACKGROUND: The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus. METHODS: We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. RESULTS: In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy. CONCLUSIONS: These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.)
An overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with HI masses from 10^6 to ~10^{11} M_sun, and luminosities from M_R ~ -12 to M_R ~ -22. The sample is selected to uniformly cover the available range in log(M_HI). Our extremely deep observations, down to HI column density limits of well below 10^{18} cm^{-2} - or a few hundred times fainter than the typical HI disks in galaxies - will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modelling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT's capabilities
SKA Science Data Challenge 2: analysis and results
The Square Kilometre Array Observatory (SKAO) will explore the radio sky to
new depths in order to conduct transformational science. SKAO data products
made available to astronomers will be correspondingly large and complex,
requiring the application of advanced analysis techniques to extract key
science findings. To this end, SKAO is conducting a series of Science Data
Challenges, each designed to familiarise the scientific community with SKAO
data and to drive the development of new analysis techniques. We present the
results from Science Data Challenge 2 (SDC2), which invited participants to
find and characterise 233245 neutral hydrogen (Hi) sources in a simulated data
product representing a 2000~h SKA MID spectral line observation from redshifts
0.25 to 0.5. Through the generous support of eight international supercomputing
facilities, participants were able to undertake the Challenge using dedicated
computational resources. Alongside the main challenge, `reproducibility awards'
were made in recognition of those pipelines which demonstrated Open Science
best practice. The Challenge saw over 100 participants develop a range of new
and existing techniques, with results that highlight the strengths of
multidisciplinary and collaborative effort. The winning strategy -- which
combined predictions from two independent machine learning techniques to yield
a 20 percent improvement in overall performance -- underscores one of the main
Challenge outcomes: that of method complementarity. It is likely that the
combination of methods in a so-called ensemble approach will be key to
exploiting very large astronomical datasets.Comment: Under review by MNRAS; 28 pages, 16 figure
Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life.
BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life
MHONGOOSE: A MeerKAT nearby galaxy H I survey
The MHONGOOSE (MeerKAT H I Observations of Nearby Galactic Objects: Observing Southern Emitters) survey maps the distribution and kinematics of the neutral atomic hydrogen (H I) gas in and around 30 nearby star-forming spiral and dwarf galaxies to extremely low H I column densities. The H I column density sensitivity (3σ over 16 km s−1) ranges from ∼5 × 1017 cm−2 at 90″ resolution to ∼4 × 1019 cm−2 at the highest resolution of 7″. The H I mass sensitivity (3σ over 50 km s−1) is ∼5.5 × 105 M⊙ at a distance of 10 Mpc (the median distance of the sample galaxies). The velocity resolution of the data is 1.4 km s−1. One of the main science goals of the survey is the detection of cold accreting gas in the outskirts of the sample galaxies. The sample was selected to cover a range in H I masses from 107 M⊙ to almost 1011 M⊙ in order to optimally sample possible accretion scenarios and environments. The distance to the sample galaxies ranges from 3 to 23 Mpc. In this paper, we present the sample selection, survey design, and observation and reduction procedures. We compared the integrated H I fluxes based on the MeerKAT data with those derived from single-dish measurement and find good agreement, indicating that our MeerKAT observations are recovering all flux. We present H I moment maps of the entire sample based on the first ten percent of the survey data, and find that a comparison of the zeroth- and second-moment values shows a clear separation in the physical properties of the H I between areas with star formation and areas without related to the formation of a cold neutral medium. Finally, we give an overview of the H I-detected companion and satellite galaxies in the 30 fields, five of which have not previously been cataloged. We find a clear relation between the number of companion galaxies and the mass of the main target galaxy
Appearance of dark neurons following anodal polarization in the rat brain.
An anodal direct current of 3.0 microA or 30.0 microA was unilaterally applied for 30 min or 3 h to the surface of the sensorimotor cortex of rats, and the effects of polarization on the morphology of brain cells were examined by light microscopy. After five repeated anodal polarization trials, dark neurons appeared mainly in the polarized neocortex regardless of the intensity and duration of the polarizing currents. Such dark neurons were scarce in the control animals or the animals receiving only one trial of polarization. The dark neurons were most abundant in the second to fourth layers of the ipsilateral superior-lateral convexity of the frontal cortex, but a few were present in the contralateral cortex. The dark neurons began to appear 24 h after the last polarization; thereafter almost all of these neurons gradually reverted to their normal morphological profiles through a transitory state within 1 month of the last trial of repeated polarization. No morphological changes were apparent in any of the brain structures other than the cerebral cortex. These findings indicate that repeated anodal polarization has reversible morphological effects on the cortical neurons, suggesting that the appearance of dark neurons after anodal polarization is an important index for evaluation of cortical plastic change induced by polarization.</p
- …