9 research outputs found

    Protein expression profiling during chick retinal maturation: a proteomics-based approach

    Get PDF
    Background The underlying pathways that drive retinal neurogenesis and synaptogenesis are still relatively poorly understood. Protein expression analysis can provide direct insight into these complex developmental processes. The aim of this study was therefore to employ proteomic analysis to study the developing chick retina throughout embryonic (E) development commencing at day 12 through 13, 17, 19 and post-hatch (P) 1 and 33 days. Results 2D proteomic and mass spectrometric analysis detected an average of 1514 spots per gel with 15 spots demonstrating either modulation or constitutive expression identified via MS. Proteins identified included alpha and beta-tubulin, alpha enolase, B-creatine kinase, gamma-actin, platelet-activating factor (PAF), PREDICTED: similar to TGF-beta interacting protein 1, capping protein (actin filament muscle Z line), nucleophosmin 1 (NPM1), dimethylarginine dimethylaminohydrolase, triosphoaphate isomerase, DJ1, stathmin, fatty acid binding protein 7 (FABP7/B-FABP), beta-synuclein and enhancer of rudimentary homologue. Conclusion This study builds upon previous proteomic investigations of retinal development and represents the addition of a unique data set to those previously reported. Based on reported bioactivity some of the identified proteins are most likely to be important to normal retinal development in the chick. Continued analysis of the dynamic protein populations present at the early stages and throughout retinal development will increase our understanding of the molecular events underpinning retinogenesis

    Proteomic profiling of the retinal dysplasia and degeneration chickretina

    Get PDF
    PURPOSE: In our previous paper we undertook proteomic analysis of the normal developing chick retina to identify proteins that were differentially expressed during retinal development. In the present paper we use the same proteomic approach to analyze the development and onset of degeneration in the retinal dysplasia and degeneration (rdd) chick. The pathology displayed by the rdd chick resembles that observed in some of the more severe forms of human retinitis pigmentosa. METHODS: Two-dimensional gel electrophoresis (pH 4–7), gel image analysis, and mass spectrometry were used to profile the developing and degenerating retina of the rdd and wild-type (wt) chick retina. RESULTS: Several proteins were identified by mass spectrometry that displayed differential expression between normal and rdd retina between embryonic day 12 (E12) and post-hatch day 1 (P1). Secernin 1 displayed the most significant variation in expression between rdd and wt retina; this may be due to differential phosphorylation in the rdd retina. Secernin 1 has dipeptidase activity and has been demonstrated to play a role in exocytosis; it has been shown to be overexpressed in certain types of cancer and has also been suggested as a potential neurotoxicologically relevant target. Its role in the retina and in particular its differential expression in the degenerate rdd retina remains unknown and will require further investigation. Other proteins that were differentially expressed in the rdd retina included valosin-containing protein, β-synuclein, stathmin 1, nucleoside diphosphate kinase, histidine triad nucleotide-binding protein, and 40S ribosomal protein S12. These proteins are reported to be involved in several cellular processes, including the ubiquitin proteasome pathway, neuroprotection, metastatic suppression, transcriptional and translational regulation, and regulation of microtubule dynamics. CONCLUSIONS: This proteomic study is the first such investigation of the rdd retina and represents a unique data set that has revealed several proteins that are differentially expressed during retinal degeneration in the rdd chick. Secernin 1 showed the most significant differences in expression during this degeneration period. Further investigation of the proteins identified may provide insight into the complex events underlying retinal degeneration in this animal model

    Pain and quality of life perception in children with hypermobility syndrome

    Get PDF
    This poster was presented at the Annual Meeting of the British-Society-Rheumatology/Spring Meeting of British Health Professional in Rheumatology Liverpool, APR 22-25, 2007. Hypermobility syndrome (HMS) is a major source of morbidity in children. Due to pain, activities of daily living, physical and sports activities may be limited in children with HMS (Murray and Woo 2001). However, this has not been well documented. Ruperto et al (2004) reported that functional ability and physical and psychosocial well-being of children with generalised joint laxity were not affected when compared with healthy controls. Their study was conducted on children with generalised joint laxity, however, and not those with HMS. Therefore, it is currently unclear whether quality of life (QoL) in children with HMS is affected. This study compared pain and QoL in children diagnosed with HMS with healthy controls

    Mpdz null allele in an avian model of retinal degeneration and mutations in human leber congenital amaurosis and retinitis pigmentosa.

    No full text
    Purpose. To identify the defective gene in the sex-linked, recessively inherited retinal dysplasia and degeneration (rdd) chicken and to search for the human equivalent disease. Methods. Microsatellites from chicken chromosome Z were genotyped in 77 progeny of a carrier male (rdd/+) and an affected female (rdd/W), and candidate genes were sequenced. Retinal cross-sections from rdd and wild-type birds were analyzed by immunohistology. The human orthologous gene was screened in a panel of archival DNAs from 276 patients with retinitis pigmentosa (RP) or Leber congenital amaurosis (LCA) using melting curve analysis and DNA sequencing. Results. The rdd locus was refined to an approximately 3-Mb region on chromosome Z. Sequence analysis identified a C→T change in the mpdz gene that created a premature stop codon (c.1372C→T, p.R458X), which segregated with the disease phenotype. As expected, the full-length mpdz protein was absent in rdd retinas, but in wild-type birds, it localized to the retinal outer limiting membrane, where it may have a role in the interactions between photoreceptors and Müller glia cells. The screen to identify the human equivalent disease found 10 heterozygous variants in the orthologous gene in patients with RP (three missense and two null alleles) and LCA (four missense and one null allele). Conclusions. These findings reveal that MPDZ is essential for normal development of the retina and may have a role in maintaining photoreceptor integrity. The identification of human mutations suggests that MPDZ plays a role in human retinal disease, but the precise nature of this role remains to be determined
    corecore