808 research outputs found

    Remote sensing for optimal estimation of water temperature dynamics in shallow tidal environments

    Get PDF
    Given the increasing anthropogenic pressures on lagoons, estuaries, and lakes and considering the highly dynamic behavior of these systems, methods for the continuous and spatially distributed retrieval of water quality are becoming vital for their correct monitoring and management. Water temperature is certainly one of the most important drivers that influence the overall state of coastal systems. Traditionally, lake, estuarine, and lagoon temperatures are observed through point measurements carried out during field campaigns or through a network of sensors. However, sporadic measuring campaigns or probe networks rarely attain a density sufficient for process understanding, model development/validation, or integrated assessment. Here, we develop and apply an integrated approach for water temperature monitoring in a shallow lagoon which incorporates satellite and in-situ data into a mathematical model. Specifically, we use remote sensing information to constrain large-scale patterns of water temperature and high-frequency in situ observations to provide proper time constraints. A coupled hydrodynamic circulation-heat transport model is then used to propagate the state of the system forward in time between subsequent remote sensing observations. Exploiting the satellite data high spatial resolution and the in situ measurements high temporal resolution, the model may act a physical interpolator filling the gap intrinsically characterizing the two monitoring techniques

    An interactive genome browser of association results from the UK10K cohorts project.

    Get PDF
    UNLABELLED: High-throughput sequencing technologies survey genetic variation at genome scale and are increasingly used to study the contribution of rare and low-frequency genetic variants to human traits. As part of the Cohorts arm of the UK10K project, genetic variants called from low-read depth (average 7×) whole genome sequencing of 3621 cohort individuals were analysed for statistical associations with 64 different phenotypic traits of biomedical importance. Here, we describe a novel genome browser based on the Biodalliance platform developed to provide interactive access to the association results of the project. AVAILABILITY AND IMPLEMENTATION: The browser is available at http://www.uk10k.org/dalliance.html. Source code for the Biodalliance platform is available under a BSD license from http://github.com/dasmoth/dalliance, and for the LD-display plugin and backend from http://github.com/dasmoth/ldserv

    MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation

    Get PDF
    In this paper, we present MLP, a MATLAB toolbox enabling auditory thresholds estimation via the adaptive Maximum Likelihood procedure proposed by David Green (1990, 1993). This adaptive procedure is particularly appealing for those psychologists that need to estimate thresholds with a good degree of accuracy and in a short time. Together with a description of the toolbox, the current text provides an introduction to the threshold estimation theory and a theoretical explanation of the maximum likelihood adaptive procedure. MLP comes with a graphical interface and it is provided with several built-in, classic psychoacoustics experiments ready to use at a mouse click

    Results of the IGEC-2 search for gravitational wave bursts during 2005

    Get PDF
    The network of resonant bar detectors of gravitational waves resumed coordinated observations within the International Gravitational Event Collaboration (IGEC-2). Four detectors are taking part in this collaboration: ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was the only gravitational wave observatory in operation. The network data analysis implemented is based on a time coincidence search among AURIGA, EXPLORER and NAUTILUS, keeping the data from ALLEGRO for follow-up studies. With respect to the previous IGEC 1997-2000 observations, the amplitude sensitivity of the detectors to bursts improved by a factor about 3 and the sensitivity bandwidths are wider, so that the data analysis was tuned considering a larger class of detectable waveforms. Thanks to the higher duty cycles of the single detectors, we decided to focus the analysis on three-fold observation, so to ensure the identification of any single candidate of gravitational waves (gw) with high statistical confidence. The achieved false detection rate is as low as 1 per century. No candidates were found.Comment: 10 pages, to be submitted to Phys. Rev.

    Common variants at 10 Genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways

    Get PDF
    OBJECTIVE: Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels. RESEARCH DESIGN AND METHODS: We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS: Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10(−26)), HFE (rs1800562/P = 2.6 × 10(−20)), TMPRSS6 (rs855791/P = 2.7 × 10(−14)), ANK1 (rs4737009/P = 6.1 × 10(−12)), SPTA1 (rs2779116/P = 2.8 × 10(−9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10(−9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 × 10(−54)), MTNR1B (rs1387153/P = 4.0 × 10(−11)), GCK (rs1799884/P = 1.5 × 10(−20)) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10(−18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA(1c). CONCLUSIONS: GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c)

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity

    Breed-Specific Hematological Phenotypes in the Dog: A Natural Resource for the Genetic Dissection of Hematological Parameters in a Mammalian Species

    Get PDF
    Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC) varied with age. Concentrations of white blood cells (WBCs), neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH), MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition

    Is the thrifty genotype hypothesis supported by evidence based on confirmed type 2 diabetes- and obesity-susceptibility variants?

    Get PDF
    AIMS/HYPOTHESIS: According to the thrifty genotype hypothesis, the high prevalence of type 2 diabetes and obesity is a consequence of genetic variants that have undergone positive selection during historical periods of erratic food supply. The recent expansion in the number of validated type 2 diabetes- and obesity-susceptibility loci, coupled with access to empirical data, enables us to look for evidence in support (or otherwise) of the thrifty genotype hypothesis using proven loci. METHODS: We employed a range of tests to obtain complementary views of the evidence for selection: we determined whether the risk allele at associated 'index' single-nucleotide polymorphisms is derived or ancestral, calculated the integrated haplotype score (iHS) and assessed the population differentiation statistic fixation index (F (ST)) for 17 type 2 diabetes and 13 obesity loci. RESULTS: We found no evidence for significant differences for the derived/ancestral allele test. None of the studied loci showed strong evidence for selection based on the iHS score. We find a high F (ST) for rs7901695 at TCF7L2, the largest type 2 diabetes effect size found to date. CONCLUSIONS/INTERPRETATION: Our results provide some evidence for selection at specific loci, but there are no consistent patterns of selection that provide conclusive confirmation of the thrifty genotype hypothesis. Discovery of more signals and more causal variants for type 2 diabetes and obesity is likely to allow more detailed examination of these issues

    3-mode detection for widening the bandwidth of resonant gravitational wave detectors

    Full text link
    We have implemented a novel scheme of signal readout for resonant gravitational wave detectors. For the first time, a capacitive resonant transducer has been matched to the signal amplifier by means of a tuned high Q electrical resonator. The resulting 3-mode detection scheme widens significantly the bandwidth of the detector. We present here the results achieved by this signal readout equipped with a two-stage SQUID amplifier. Once installed on the AURIGA detector, the one-sided spectral sensitivity obtained with the detector operated at 4.5 K is better than 10^-20 Hz^-1/2 over 110 Hz and in good agreement with the expectations.Comment: 17 pages, 4 figure
    corecore