8 research outputs found
Integrated photonic structures for photon-mediated entanglement of trapped ions
Trapped atomic ions are natural candidates for quantum information processing
and have the potential to realize or improve quantum computing, sensing, and
networking. These applications often require the collection of individual
photons emitted from ions into guided optical modes, in some cases for the
production of entanglement between separated ions. Proof-of-principle
demonstrations of such photon collection from trapped ions have been performed
using high-numerical-aperture lenses and single-mode fibers, but integrated
photonic elements in ion-trap structures offer advantages in scalability and
manufacturabilty over traditional optics. In this paper we analyze structures
monolithically fabricated with an ion trap for collecting single photons from
ions, coupling them into integrated waveguides, and manipulating them via
interference. We discuss practical considerations for realizing photon-mediated
entanglement between trapped ions using these waveguide-based devices.Comment: 17 pages, 6 figures, 2 table
Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform
CLEO: Science and Innovations 2015
San Jose, California United States
10–15 May 2015
ISBN: 978-1-55752-968-8
From the session:
Silicon Photonic Systems (SM2I)The final version is available from the publisher via the DOI in this record.Integrated components necessary for a mode-locked laser are demonstrated on a platform that allows for monolithic integration with active silicon photonics and CMOS circuitry. CW lasing and Q-switched mode-locking are observed in the full structures.This work was supported under the DARPA E-PHI project, grant no. HR0011-12-2-0007
2022 Roadmap on integrated quantum photonics
AbstractIntegrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering
2022 Roadmap on integrated quantum photonics
Integrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering
Recommended from our members
Roadmap on Integrated Quantum Photonics
Integrated photonics is at the heart of many classical technologies, from
optical communications to biosensors, LIDAR, and data center fiber
interconnects. There is strong evidence that these integrated technologies will
play a key role in quantum systems as they grow from few-qubit prototypes to
tens of thousands of qubits. The underlying laser and optical quantum
technologies, with the required functionality and performance, can only be
realized through the integration of these components onto quantum photonic
integrated circuits (QPICs) with accompanying electronics. In the last decade,
remarkable advances in quantum photonic integration and a dramatic reduction in
optical losses have enabled benchtop experiments to be scaled down to prototype
chips with improvements in efficiency, robustness, and key performance metrics.
The reduction in size, weight, power, and improvement in stability that will be
enabled by QPICs will play a key role in increasing the degree of complexity
and scale in quantum demonstrations. In the next decade, with sustained
research, development, and investment in the quantum photonic ecosystem (i.e.
PIC-based platforms, devices and circuits, fabrication and integration
processes, packaging, and testing and benchmarking), we will witness the
transition from single- and few-function prototypes to the large-scale
integration of multi-functional and reconfigurable QPICs that will define how
information is processed, stored, transmitted, and utilized for quantum
computing, communications, metrology, and sensing. This roadmap highlights the
current progress in the field of integrated quantum photonics, future
challenges, and advances in science and technology needed to meet these
challenges
2022 Roadmap on integrated quantum photonics
Integrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering.ISSN:2515-764