20 research outputs found

    Lifeways at the Mesolithic-Neolithic Transition: Integrating New Biomolecular Approaches to Skeletal Material in Britain

    Get PDF
    The Mesolithic-Neolithic transition is a period which has long held fascination for archaeologists, and yet the lifeways of individuals at this time are still not fully understood – in part due to the lack of human remains in Britain from the period. This thesis therefore aimed to adopt a combined biomolecular approach to determine more information about the lifeways of both the Mesolithic and Neolithic of Britain, and of the transition between them, but utilising archaeological material not traditionally included within these debates – notably unidentifiable bone fragments, disarticulated skeletal remains, and dental calculus. Through analysis of these materials, the thesis focuses on five main areas of interest: identification, diet, mobility, chronology, and health/disease; utilising six different techniques: ZooMS, δ13C and δ15N stable isotope analysis, 86Sr/87Sr isotopic analysis, AMS dating, and metagenomic and metaproteomic analysis of dental calculus. As such, this marks the largest combined application of biomolecular techniques to British Mesolithic and Neolithic material to date. The results of this study highlight the value which may be held within previously overlooked early prehistoric archaeological materials, and the information which they may be able to contribute to existing discussions of Mesolithic and Neolithic lifeways. Overall, it can be seen that the main outcomes of this study are (i) that additional human remains may be present within early prehistoric ‘unidentifiable’ fragmented bone assemblages; (ii) dietary complexity in both the Mesolithic and Neolithic of Britain may be greater than previously thought; (iii) enhanced understanding of Neolithic mobility; (iv) a reconsideration of the approach to chronology at the Mesolithic-Neolithic transition; and (v) that dental calculus may provide a suitable and useful new medium via which to study prehistoric health and disease in future studies

    Radiocarbon chronology and environmental context of Last Glacial Maximum human occupation in Switzerland

    Get PDF
    Central Europe during the Last Glacial Maximum (LGM) was dominated by polar desert and steppe-tundra biomes. Despite this, a human presence during this time period is evident at several locations across the region, including in Switzerland, less than 50 km from the Alpine ice sheet margin. It has been hypothesised that such human activity may have been restricted to brief periods of climatic warming within the LGM, but chronological information from many of these sites are currently too poorly resolved to corroborate this. Here we present a revised chronology of LGM human occupation in Switzerland. AMS radiocarbon dating of cut-marked reindeer (Rangifer tarandus) bones from the sites of Kastelhöhle-Nord and Y-Höhle indicates human occupation of Switzerland was most likely restricted to between 23,400 and 22,800 cal. BP. This timeframe corresponds to Greenland Interstadial 2, a brief warming phase, supporting the hypothesis that human presence was facilitated by favourable climatic episodes. Carbon, nitrogen and sulphur stable isotope analysis of the fauna provides palaeoenvironmental information for this time period. These findings contribute to our understanding of human activity in ice-marginal environments and have implications for understanding cultural connections across central Europe during the LGM

    Archaeological bone lipids as palaeodietary markers

    Get PDF
    Rationale Stable isotope analysis of archaeological and fossil bone samples can provide important insights into past environments, ecologies and diets. Previous studies have focused on stable carbon and nitrogen isotopes in bone collagen, or carbon isotopes in bone mineral (bioapatite). Carbon isotope analysis of lipids from archaeological bone has received much less attention, partly due to the lack of suitable methodologies allowing sufficient recovery of compounds for structural and isotopic characterisation. Here we show that lipids can be easily and reliably recovered from archaeological bone using a modified protocol, and that these provide complementary dietary information to other bone components. Methods Human and animal bones were obtained from a variety of archaeological contexts. Lipids were sequentially extracted using solvent extraction (dichloromethane/methanol), followed by acidified methanol extraction (methanol/H2SO4). The lipids were then analysed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Results Appreciable amounts of endogenous lipid were recovered from archaeological bone. Importantly, a comparison between compound-specific and bulk collagen isotopic data shows that archaeological bone lipids reflect dietary input and can be used to distinguish between marine and terrestrial consumers, as well as between C3 and C4 plant consumers. Furthermore, the presence of essential fatty acids directly incorporated from diet to bone may provide additional palaeodietary information. Conclusions Our findings suggest that archaeological bone lipids are a hitherto untapped resource of dietary information that offer additional insights to those gained from other isotopic analyses of bone

    New insights into Neolithic milk consumption through proteomic analysis of dental calculus

    Get PDF
    There has long been debate over the origins of dairy consumption within European populations. Whilst it was previously assumed that lactase persistence (LP) was under positive selection following the advent of agriculture, recent genetic studies of prehistoric human remains have revealed LP may have only emerged in Europe in the last 4000 years. These findings stand in contrast to organic residue analysis of Neolithic pottery indicating the utilisation of dairy products, and zooarchaeological mortality profiles consistent with dairying herds at Neolithic sites. The recent discovery of the milk protein β-lactoglobulin (BLG) within human dental calculus presents a new method via which to explore dairy product consumption in the archaeological past. Here, we apply shotgun proteomic analysis to dental calculus samples from three British Neolithic sites, revealing the earliest identification of BLG in human dental calculus to date. The presence of BLG peptides in individuals who are unlikely to possess LP provides new insight into dairying in the British Neolithic, suggesting the potential processing of milk by Neolithic populations to reduce the lactose content of dairy products

    Deglacial landscapes and the Late Upper Palaeolithic of Switzerland

    Get PDF
    The presence of people in Switzerland in recently deglaciated landscapes after the Last Glacial Maximum represents human utilisation of newly available environments. Understanding these landscapes and the resources available to the people who exploited them is key to understanding not only Late Upper Palaeolithic settlement in Switzerland, but more broadly human behavioural ecology in newly inhabited environmental settings. By applying bone collagen stable isotope analysis (δ13C, δ15N and δ34S) to faunal remains from Late Upper Palaeolithic localities in Switzerland, we investigate animal ecology and environmental conditions during periods of human occupation. High and relatively uniform δ34S values indicate that landscapes north of the Jura Mountains provided comparatively stable environmental conditions, while lower and more variable δ34S values on the Swiss Plateau suggest a dynamic landscape with diverse hydrological and pedological conditions, potentially linked to regionally different patterns of permafrost thaw. This contrasts with the archaeological record that appears relatively uniform between the two regions, suggesting people were employing similar subsistence behaviours across a range of environmental settings. The pattern of change in δ15N across the deglacial period appears consistent between areas that remained ice-free throughout the LGM and those that were glaciated. Most notable is a period of exclusively low δ15N values between 15,200 and 14,800 cal. BP, which could relate a regional expansion of floral biomass in response to environmental change

    Avelines's Hole: An Unexpected Twist in the Tale

    Get PDF
    Aveline’s Hole is the largest known Early Mesolithic cemetery in Britain, previously thought to have no evidence for subsequent burial activity. Thus, it came as some surprise when the results of a recent ancient human DNA study found that, of four individuals from the site yielding genomic data, two showed high levels of ancestry from Early Neolithic Aegean farmers. Radiocarbon dating confirmed that these two individuals were indeed British Early Neolithic in date, while the other two had the expected ‘Western Hunter-Gatherer’ ancestry genomic signatures, with the two groups separated in time by nearly five millennia. Moreover, the two Neolithic samples were both crania, while the two Mesolithic samples were long bones. Given the absence of Neolithic dates in the previous sizeable dating programme combined with the difficult history of the collection, i.e., the WWII bombing of its Bristol repository, this raised the question of whether the crania might in fact be from another site. As we show in this paper, a very strong case can be made that the crania do in fact originate from Aveline’s Hole. Additional radiocarbon dating (14 in total, including the above mentioned four) suggests that about half the cranial elements from the site fall within the Early Neolithic, though there is still no evidence for the deposition of post-cranial remains at this time, nor is there any burial evidence in the long intervening period between the Early Mesolithic and the Early Neolithic. Intriguingly, craniometric analyses of legacy data including three crania lost in the bombing suggest that one, Aveline’s Hole ‘A’, may be Upper Palaeolithicin date. As part of this re-investigation of the human remains from the site, we present new stable carbon and nitrogen isotope analyses that differ significantly from those originally reported for the Early Mesolithic, with the new results more in keeping with other isotopic data for this period. We also present new stable carbon and nitrogen isotope results on human remains from the nearby Early Mesolithic sites of Badger Hole and Greylake, and report new Early Mesolithic radiocarbon dates and isotopic data from Cannington Park Quarry. Clear isotopic differences between the Early Mesolithic and the Neolithic remains can be seen, but these are argued to relate primarily to shifts in the underlying ecological baselines, rather than to differences in types of foods consumed (with the caveat that terrestrial wild and domesticated foods will be isotopically similar). The genetic data are summarised, giving evidence not only of the ancestry of Mesolithic and Neolithic individuals from Aveline’s Hole, but also suggesting something of their physical appearance. The degree of population replacement now indicated by ancient DNA suggests that there was a substantial migration of farmers into Britain at the start of the Neolithic. This new information demonstrates the archaeological importance of Aveline's Hole for both the Mesolithic and Neolithic periods."Funding for nine of the new radiocarbon dates from Aveline’s Hole reported here was provided by NERC’s NRCF programme (NF/2016/2/16). The ancient DNA study was funded by the Wellcome Trust (100713/Z/12/Z), as were three new radiocarbon dates from Aveline’s Hole. The isotopic analysis of the Badger Hole human remains was funded as part of a NERC studentship (NE/K500987/1)."https://www.ubss.org.uk/resources/proceedings/vol28/UBSS_Proc_28_1_9-63.pd

    Dual ancestries and ecologies of the Late Glacial Palaeolithic in Britain

    Get PDF
    Genetic investigations of Upper Palaeolithic Europe have revealed a complex and transformative history of human population movements and ancestries, with evidence of several instances of genetic change across the European continent in the period following the Last Glacial Maximum (LGM). Concurrent with these genetic shifts, the post-LGM period is characterized by a series of significant climatic changes, population expansions and cultural diversification. Britain lies at the extreme northwest corner of post-LGM expansion and its earliest Late Glacial human occupation remains unclear. Here we present genetic data from Palaeolithic human individuals in the United Kingdom and the oldest human DNA thus far obtained from Britain or Ireland. We determine that a Late Upper Palaeolithic individual from Gough's Cave probably traced all its ancestry to Magdalenian-associated individuals closely related to those from sites such as El Mirón Cave, Spain, and Troisième Caverne in Goyet, Belgium. However, an individual from Kendrick's Cave shows no evidence of having ancestry related to the Gough’s Cave individual. Instead, the Kendrick’s Cave individual traces its ancestry to groups who expanded across Europe during the Late Glacial and are represented at sites such as Villabruna, Italy. Furthermore, the individuals differ not only in their genetic ancestry profiles but also in their mortuary practices and their diets and ecologies, as evidenced through stable isotope analyses. This finding mirrors patterns of dual genetic ancestry and admixture previously detected in Iberia but may suggest a more drastic genetic turnover in northwestern Europe than in the southwest

    Ancient genomes indicate population replacement in Early Neolithic Britain

    Get PDF
    The roles of migration, admixture and acculturation in the European transition to farming have been debated for over 100 years. Genome-wide ancient DNA studies indicate predominantly Aegean ancestry for continental Neolithic farmers, but also variable admixture with local Mesolithic hunter-gatherers. Neolithic cultures first appear in Britain circa 4000 bc, a millennium after they appeared in adjacent areas of continental Europe. The pattern and process of this delayed British Neolithic transition remain unclear. We assembled genome-wide data from 6 Mesolithic and 67 Neolithic individuals found in Britain, dating 8500–2500 bc. Our analyses reveal persistent genetic affinities between Mesolithic British and Western European hunter-gatherers. We find overwhelming support for agriculture being introduced to Britain by incoming continental farmers, with small, geographically structured levels of hunter-gatherer ancestry. Unlike other European Neolithic populations, we detect no resurgence of hunter-gatherer ancestry at any time during the Neolithic in Britain. Genetic affinities with Iberian Neolithic individuals indicate that British Neolithic people were mostly descended from Aegean farmers who followed the Mediterranean route of dispersal. We also infer considerable variation in pigmentation levels in Europe by circa 6000 bc

    The History of Coast Salish ‘Woolly Dogs’ Revealed by Ancient Genomics and Indigenous Knowledge

    Get PDF
    Ancestral Coast Salish societies in the Pacific Northwest kept long-haired “woolly” dogs that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. Here, we analyze genomic and isotopic data from a preserved woolly dog pelt, “Mutton”, collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant pre-colonial ancestry postdating the onset of settler colonialism. We identify candidate genetic variants potentially linked with their unique woolly phenotype. We integrate these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance
    corecore