19 research outputs found

    How to broaden enzyme substrate specificity: strategies, implications and applications.

    No full text
    For identification of mutations associated with the broadening of enzyme substrate specificity, three strategies, including directed enzyme evolution, are described for selected examples. Implications concerning enzyme models are highlighted. Applications to the field of biocatalysis are discussed. A bidimensional map for the classification of enzyme activities is suggested so as to improve genome annotations

    2′-Deoxyribonucleoside 5′-triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as DNA polymerase substrates

    No full text
    International audienceWe developed a versatile access to a series of 4-substituted imidazole 2'-deoxynucleoside triphosphate bearing functionalized phenyl or pyrimidinyl rings. 4-Iodo-1H-imidazole was enzymatically converted into the corresponding 2'-deoxynucleoside, which was then chemically derived into its 5'-triphosphate, followed by 4-arylation via Suzuki-Miyaura coupling using (hetero)arylboronic acids. Both KF (exo-) and Deep Vent (exo-) DNA polymerases incorporated these modified nucleotides in primer-extension assays, adenine being the preferred pairing partner in the template. The 4-(3-aminophenyl)imidazole derivative (3APh) was the most efficiently inserted opposite A by KF (exo-) with only a 37-fold lower efficiency (Vmax/KM) than that of the correct dTTP. No further extension occurred after the incorporation of a single aryl-imidazole nucleotide. Interestingly, the aryl-imidazole dNTPs were found to undergo successive incorporation by calf thymus terminal deoxynucleotidyl transferase with different tailing efficiencies among this series and with a marked preference for 2APyr polymerization

    A convenient synthesis of 4(5)-(hetero)aryl-1H-imidazoles via microwave-assisted Suzuki–Miyaura cross-coupling reaction

    No full text
    International audienceA simple and rapid access to a variety of 4(5)-arylated imidazoles via palladium-catalyzed Suzuki–Miyaura cross-coupling reaction is described. Coupling parameters were screened for efficient C-4 arylation of N-unprotected 4-iodoimidazole with a broad range of boronic acids under microwave irradiation. Twenty-one imidazole derivatives were synthesized in modest to excellent yields in short reaction times

    Expedient and generic synthesis of imidazole nucleosides by enzymatic transglycosylation

    No full text
    International audienceA straightforward route to original imidazole-based nucleosides that makes use of an enzymatic N-transglycosylation step is reported in both the ribo- and deoxyribo-series. To illustrate the scope of this approach, a diverse set of 4-aryl and 4-heteroaryl-1H-imidazoles featuring variable sizes and hydrogen-bonding patterns was prepared using a microwave-assisted Suzuki-Miyaura cross-coupling reaction. These imidazole derivatives were examined as possible substrates for the nucleoside 2'-deoxyribosyltransferase from L. leichmannii and the purine nucleoside phosphorylase from E. coli. The optimum transglycosylation conditions, including the use of co-adjuvants to address solubility issues, were defined. Enzymatic conversion of 4-(hetero)arylimidazoles to 2'-deoxyribo- or ribo-nucleosides proceeded in good to high conversion yields, except bulky hydrophobic imidazole derivatives. Nucleoside deoxyribosyltransferase of class II was found to convert the widest range of functionalized imidazoles into 2'-deoxyribonucleosides and was even capable of bis-glycosylating certain heterocyclic substrates. Our findings should enable chemoenzymatic access to a large diversity of flexible nucleoside analogues as molecular probes, drug candidates and original building blocks for synthetic biology

    Carbohydrate antigens: synthesis aspects and immunological applications in cancer.

    No full text
    International audienceTumor Associated Carbohydrate Antigens (TACAs) constitute powerful tools as tumor markers and as targets for anticancer immunotherapy. In this review, methods of production of glycopeptide-based vaccines, as well as results of preclinical and clinical studies in cancer patients are discussed

    Synthesis and immunological evaluation of an antitumor neoglycopeptide vaccine bearing a novel homoserine Tn antigen.

    No full text
    International audienceAs part of our program on Tn-specific anti-tumor immunotherapy, our aim was to vary the nature of the aglyconic part of the tumor-associated Tn antigen (alpha-d-GalNAc-Ser/Thr). This report describes the synthesis of Fmoc-hSer-(alpha-d-GalNAc)-OH (4) in 19% overall yield from protected aspartic acid. The building block 4 was incorporated as trimeric clusters into a glycopeptide vaccine [MAG:Tn(hSer)3-PV], using solid-phase peptide synthesis. When injected in mice, the resulting MAG induces a strong antibody response, which recognizes native tumor-associated antigens (TAA) at the surface of human tumor cells. This approach may be extended to the use of other nonnatural TAA in order to improve half-life of synthetic anti-cancer vaccines
    corecore