220 research outputs found

    Contribution of an accurate growth rate reconstruction of a stalagmite from the Kanaan Cave-Lebanon to the understanding of humidity variations in the Levant during the MIS 5

    Get PDF
    Lying at the transition between temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial-interglacial cycles. This paper presents a dated last interglacial (MIS 5) stalagmite (129–84 ka) from the Kanaan Cave, Lebanon. Variations in growth rate, morphology and petrology have been measured to derive a palaeoclimatic record. The speleothem growth curve shows rapid growth rates during the peak of MIS 5e (126-124 ka), moderate growth rates between 103.5 and 99 ka and very low growth rates from 99 to 84 ka. On the basis of the good correlation between the speleothem morphology and growth rates with the isotopic response of continental records from northern and southern Levant, we relate high growth rate to wet conditions during the maximum MIS 5e and MIS 5c. The peak in growth rates corresponds to sapropel events in the eastern Mediterranean. Low growth rates during MIS 5d and 5b indicate a transition to drier conditions

    Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium : indications for climate-driven changes during the last 400 years

    Get PDF
    Fast-growing speleothems allow for the reconstruction of palaeoclimate down to a seasonal scale. Additionally, annual lamination in some of these speleothems yields highly accurate age models for these palaeoclimate records, making these speleothems valuable archives for terrestrial climate. In this study, an annually laminated stalagmite from the Han-sur-Lesse cave (Belgium) is used to study the expression of the seasonal cycle in northwestern Europe during the Little Ice Age. More specifically, two historical 12-year-long growth periods (ca. 1593-1605 CE and 1635-1646 CE) and one modern growth period (1960-2010 CE) are analysed on a sub-annual scale for their stable-isotope ratios (delta C-13 and delta O-18) and trace-element (Mg, Sr, Ba, Zn, Y, Pb, U) contents. Seasonal variability in these proxies is confirmed with frequency analysis. Zn, Y and Pb show distinct annual peaks in all three investigated periods related to annual flushing of the soil during winter. A strong seasonal in-phase relationship between Mg, Sr and Ba in the modern growth period reflects a substantial influence of enhanced prior calcite precipitation (PCP). In particular, PCP occurs during summers when recharge of the epikarst is low. This is also evidenced by earlier observations of increased delta C-13 values during summer. In the 17th century intervals, there is a distinct antiphase relationship between Mg, Sr and Ba, suggesting that processes other than PCP, i.e. varying degrees of incongruent dissolution of dolomite, eventually related to changes in soil activity and/or land-use change are more dominant. The processes controlling seasonal variations in Mg, Sr and Ba in the speleothem appear to change between the 17th century and 1960-2010 CE. The Zn, Y, Pb, and U concentration profiles; stable-isotope ratios; and morphology of the speleothem laminae all point towards increased seasonal amplitude in cave hydrology. Higher seasonal peaks in soil-derived elements (e.g. Zn and Y) and lower concentrations of host-rock-derived elements (e.g. Mg, Sr, Ba) point towards lower residence times in the epikarst and higher flushing rates during the 17th century. These observations reflect an increase in water excess above the cave and recharge of the epikarst, due to a combination of lower summer temperatures and increased winter precipitation during the 17th century. This study indicates that the transfer function controlling Mg, Sr and Ba seasonal variability varies over time. Which process is dominant - either PCP, soil activity or dolomite dissolution - is clearly climate driven and can itself be used as a palaeoenvironment proxy

    Bruniquel – Grotte

    Get PDF
    Rappels En 2015, une seconde opération programmée a été menée dans la grotte de Bruniquel qui, rappelons-le, a été découverte en 1990 par un spéléologue, B. Kowalczelski (société spéléo-archéologique de Caussade, SSAC). Après expertise de la cavité et de son potentiel paléontologique et archéologique par F. Rouzaud qui confirma l’existence – loin de l’entrée – d’étranges structures agencées avec des concrétions, deux autorisations ont été délivrées en 1992 et 1993 au nom de l’un d’entre nous ..

    Correlation between lithostratigraphy and karstic speleothems at the cave of Han-sur-Lesse (Rochefort, Belgium)

    Get PDF
    editorial reviewedThe objective of this study is to investigate the correlation between speleothems (secondary carbonate deposits in caves) and rocks in which they were formed in the cave of Han-sur-Lesse in Belgium. To answer this problematic, a lithostratigraphic study of the Givetian host rock in which the speleothems were set up was based mainly on the studies of (Bultynck et al, 1991 and Coen & Coen Aubert, 1971). The study showed that the geological Formations present in the cave (Touristic network and “Réseau Sud”) are essentially those of Mont d’Haurs and Fromelennes (composed by Moulin Boreux and Flohimont Members in this cave). This study precisely locate the limits of Flohimont Member in the Artificial tunnel (Touristic network) and locate it entirely in the “Salle de la Pentecôte” (“Réseau Sud”).4. Quality education11. Sustainable cities and communities6. Clean water and sanitatio

    Trace-element imaging at macroscopic scale in a Belgian sphalerite-galena ore using Laser-Induced Breakdown Spectroscopy (LIBS)

    Get PDF
    Laser-Induced Breakdown Spectroscopy (LIBS) is a fast in-situ analytical technique based on spectroscopic analysis of atomic emission in laser-induced plasmas. Geochemical mapping at macroscopic scale using LIBS was applied to a decimetric Zn-Pb ore sample from east Belgium, which consists of alternating sphalerite and galena bands. A range of elements was detected with no or minimal spectral correction, including elements of interest for beneficiation such as Ge, Ag and Ga (although the detection of gallium could not be confirmed), and remediation, especially As and Tl. The comparison between LIBS and Energy Dispersive Spectroscopy (EDS) analyses showed that LIBS intensities reliably relate to elemental concentration although differences in spot size and detection limits exist between both techniques. The elemental images of minor and trace elements (Fe, Cu, Ag, Cd, Sb, As, Tl, Ge, Ni and Ba) obtained with LIBS revealed with great detail the compositional heterogeneity of the ore, including growth zones that were not visible on the specimen. In addition, each mineral generation has a distinct trace-element composition, reflecting a geochemical sequence whose potential metallogenic significance at the district scale should be addressed in further work. Although qualitative and preliminary, the obtained LIBS dataset already produced a wealth of information that allowed to initiate discussion on some genetical and crystallochemical aspects. Above all, LIBS appears as a powerful tool for screening geochemically large samples for the selection of zones of particular interest for further analysis.LIBS Scree

    Predicting recovery in patients with mild traumatic brain injury and a normal CT using serum biomarkers and diffusion tensor imaging (CENTER-TBI):an observational cohort study

    Get PDF
    Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI. Methods: We included 1025 patients aged &gt;18 years with a Glasgow Coma Score &gt;12 and normal CT from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study which recruited between December 19,2014 and December 17, 2017 (NCT02210221). Biomarkers (GFAP, NFL, S100B) were obtained at a median of 8.8 h (Q1–Q3 4.2–16.7) and DTI at 13 days (3–19) after injury. DTI metrics were available in 153 patients for 48 white matter tracts (ICBM-DTI-81 atlas). Incomplete recovery at three months was defined as an extended Glasgow Outcome Scale score &lt;8. Existing prognostic models were fitted with and without biomarkers, or with and without DTI, and internally validated using bootstrapping. Findings: 385 (38%) patients had incomplete recovery. Adding biomarkers did not improve performance beyond the best existing clinical prognostic model [optimism-corrected AUC 0.69 (95% CI 0.65–0.72) and R2 17% (11–22)]. Adding DTI metrics significantly enhanced all models [best optimism-corrected AUC 0.82 (0.79–0.85) and R2 75% (39–100)]. The top three prognostic tracts were the left posterior thalamic radiation, left superior cerebellar peduncle and right uncinate fasciculus. Serum biomarkers could have avoided 1 in 5 DTI scans, with GFAP &lt;12 h and NFL 12–24 h from injury performing best. Interpretation: DTI substantially improved existing prognostic models for functional outcome in patients with mTBI and a normal CT, and biomarkers could help select patients for MRI. If validated, DTI could allow for targeted follow-up and enrichment of clinical trials of early interventions to improve outcome. </p

    Predicting recovery in patients with mild traumatic brain injury and a normal CT using serum biomarkers and diffusion tensor imaging (CENTER-TBI): an observational cohort study

    Get PDF
    Background - Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI. Methods - We included 1025 patients aged >18 years with a Glasgow Coma Score >12 and normal CT from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study which recruited between December 19,2014 and December 17, 2017 (NCT02210221). Biomarkers (GFAP, NFL, S100B) were obtained at a median of 8.8 h (Q1–Q3 4.2–16.7) and DTI at 13 days (3–19) after injury. DTI metrics were available in 153 patients for 48 white matter tracts (ICBM-DTI-81 atlas). Incomplete recovery at three months was defined as an extended Glasgow Outcome Scale score Findings - 385 (38%) patients had incomplete recovery. Adding biomarkers did not improve performance beyond the best existing clinical prognostic model [optimism-corrected AUC 0.69 (95% CI 0.65–0.72) and R2 17% (11–22)]. Adding DTI metrics significantly enhanced all models [best optimism-corrected AUC 0.82 (0.79–0.85) and R2 75% (39–100)]. The top three prognostic tracts were the left posterior thalamic radiation, left superior cerebellar peduncle and right uncinate fasciculus. Serum biomarkers could have avoided 1 in 5 DTI scans, with GFAP Interpretation - DTI substantially improved existing prognostic models for functional outcome in patients with mTBI and a normal CT, and biomarkers could help select patients for MRI. If validated, DTI could allow for targeted follow-up and enrichment of clinical trials of early interventions to improve outcome
    corecore