685 research outputs found

    Deviant Desires: Gender Resistance in Romantic Friendships Between Women during the Late-Eighteenth and Early-Nineteenth Centuries in Britain

    Get PDF
    Romantic friendships between women in the late-eighteenth and early-nineteenth centuries were common in British society. Young women were drawn to each other, often in romantic ways, in part because of the way in which the society was ordered. In this period, females generally socialized only with other females, from birth until marriage. Even after marriage the majority of women spent most of their time with other women. This deep intimacy between women was encouraged and accepted and is visible in correspondence between female friends. Although there is scholarly literature surrounding romantic friendships during this period, the way in which these relationships challenged gender norms and expectations, as well as their role in resisting the oppression of heterosexual marriage, have not been adequately addressed. By looking at sexuality in history and the way it has been constructed, as well as analyzing queer and feminist theory pertaining to sexuality, I argue that women resisted mainstream structures by devoting their lives to other women, wearing gender non-conforming clothes and living apart from men. My analysis of British women\u27s history in this period, the ways sexuality has been viewed in history and queer and feminist theories pertaining to sexuality, show that romantic friendships between women served as an outlet to resist the systems of patriarchy and marriage, as well as gender roles. A close analysis of The Secret Diaries of Miss Anne Lister and the romantic friendship of Eleanor Butler and Sarah Ponsonby, better known as The Ladies of Llangollen, show that some women in romantic friendships resisted gender norms and heterosexual marriage and lived their lives without men

    Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution

    Get PDF
    This research has been supported by the National Science Foundation, Office of Polar Programs (grant no. 1916566), the National Science Foundation, Division of Ocean Sciences (grant no. 1756272), the National Aeronautics and Space Administration (grant no. NNX17AI03G), the National Science Foundation, Office of Polar Programs (grant nos. 1513396 and 1504230), the Netherlands Earth System Science Centre (grant no. 024.002.001), the Fonds De La Recherche Scientifique – FNRS (grant no. 2.5020.11), and the FédérationWallonie-Bruxelles (grant no. 1117545).Changes in ocean temperature and salinity are expected to be an important determinant of the Greenland ice sheet's future sea level contribution. Yet, simulating the impact of these changes in continental-scale ice sheet models remains challenging due to the small scale of key physics, such as fjord circulation and plume dynamics, and poor understanding of critical processes, such as calving and submarine melting. Here we present the ocean forcing strategy for Greenland ice sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change Sixth Assessment Report. Beginning from global atmosphere-ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland ice sheet models, termed the "retreat" and "submarine melt" implementations. The retreat implementation parameterises glacier retreat as a function of projected subglacial discharge and ocean thermal forcing, is designed to be implementable by all ice sheet models and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios, respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly constrained parameterisations and, as such, further research on submarine melting, calving and fjord-shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland ice sheet models to be systematically and consistently forced by the ocean for the first time and should result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.Publisher PDFPeer reviewe

    An integrated carbon and oxygen isotope approach to reconstructing past environmental variability in the northeast Atlantic Ocean

    Get PDF
    The combined influence of temperature and the isotopic composition of the seawater (δ18Ow) often precludes the use of oxygen isotope (δ18O) records, derived from marine carbonates, to reconstruct absolute seawater temperatures, without the application of an independent δ18Ow proxy. Here we investigate the application of carbon isotope records (δ13Cshell), derived from the long-lived marine bivalve Glycymeris glycymeris, as a proxy for δ18Ow variability. Our analyses indicate G. glycymeris δ13Cshell data derived from growth increments >20 years of age contain strong ontogenetic trends (−0.013‰ yr−1, R = 0.98, P < 0.001, N = 51). These analyses demonstrate that, coupled with the ontogenetic trends, 54% of the variability in G. glycymeris δ13Cshell records can be explained by a combination of the marine Suess effect and physical (salinity and riverine input) and biological processes (primary production). The application of these δ13Cshell data in conjunction with co-registered δ18Oshell and growth increment width series, each of which have been shown to be sensitive to seawater temperature and primary productivity respectively, can therefore provide new insights into past environmental variability and help constrain uncertainties on reconstructions of past seawater temperature variability

    Rotation-Induced Macromolecular Spooling of DNA

    Get PDF
    Genetic information is stored in a linear sequence of base-pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.Comment: 10 pages, 5 figure

    Drug delivery from a solid formulation during breastfeeding-A feasibility study with mothers and infants.

    Get PDF
    Funder: University of Cambridge WD Armstrong TrustFunder: University of Cambridge Kurt Hahn TrustFunder: Studienstiftung des Deutschen Volkes; funder-id: http://dx.doi.org/10.13039/501100004350BACKGROUND: Breastfeeding is critical to health outcomes, particularly in low-resource settings where there is little access to clean water. For infants in their first twelve months of life, the delivery of medications is challenging, and use of oral syringes to deliver liquid formulations can pose both practical and emotional challenges. OBJECTIVE: To explore the potential to deliver medicine to infants via a solid formulation during breastfeeding. METHODS: Single center feasibility study within a tertiary level neonatal unit in the UK, involving twenty-six breastfeeding mother-infant dyads. A solid formulation of Vitamin B12 was delivered to infants during breastfeeding. Outcomes included the quantitative change in serum vitamin B12 and assessment of maternal expectations and experiences. RESULTS: Delivery of Vitamin B12 through a solid formulation that dissolved in human milk did not impair breastfeeding, and Vitamin B12 levels rose in all infants from a mean baseline (range) 533 pg/mL (236-925 pg/mL) to 1871 pg/mL (610-4981 pg/mL) at 6-8 hours post-delivery. Mothers described the surprising ease of 'drug' delivery, with 85% reporting a preference over the use of syringes. CONCLUSIONS: Solid drug formulations can be delivered during breastfeeding and were preferred by mothers over the delivery of liquid formulations via a syringe

    Optical mapping as a routine tool for bacterial genome sequence finishing

    Get PDF
    Background: In sequencing the genomes of two Xenorhabdus species, we encountered a large number of sequence repeats and assembly anomalies that stalled finishing efforts. This included a stretch of about 12 Kb that is over 99.9% identical between the plasmid and chromosome of X. nematophila. Results: Whole genome restriction maps of the sequenced strains were produced through optical mapping technology. These maps allowed rapid resolution of sequence assembly problems, permitted closing of the genome, and allowed correction of a large inversion in a genome assembly that we had considered finished. Conclusion: Our experience suggests that routine use of optical mapping in bacterial genome sequence finishing is warranted. When combined with data produced through 454 sequencing, an optical map can rapidly and inexpensively generate an ordered and oriented set of contigs to produce a nearly complete genome sequence assembly

    Robotic telescopes and student research in the school curriculum around the OECD countries

    Get PDF
    The aim of this paper is to explore the presence and possible incorporation of inquiry-based learning approaches using Robotic Telescopes and Student Research in the regular science curriculum. This study uses preliminary findings from an extensive ongoing study, which is currently reviewing the extent of astronomy content in the school curriculum of the 35 member countries from the OECD in addition to two emerging nations in modern astronomy – China and South Africa, which are not part of the OECD. Analysis of curriculum documents from 28 OECD countries, including China and South Africa, reveals that although there is a prevalence of astronomy related content in most grades, incorporating Robotic Telescopes and Student Research into the regular science curriculum is limited by two interdependent factors. Firstly, the majority of curricula introduce astronomy-related concepts through a descriptive lens, with a focus on the “what?”, rather than the “how?” or “why?”. Secondly, astronomy in comparison to other topics gets very little time allocation. Robotic Telescopes provide teachers with enormous potential to teach students not only topics related to science, but also to afford students the opportunity to engage in “authentic science”. Thus, it is vital for the members of the astronomy community to play a greater role in the development of curricula

    Revealing their true stripes: Mg/Ca banding in the Paleogene planktonic foraminifera genus Morozovella and implications for paleothermometry

    Get PDF
    The Mg/Ca ratio of foraminiferal calcite is a widely used empirical proxy for ocean temperature. Foraminiferal Mg/Ca-temperature relationships are based on extant species and are species-specific, introducing uncertainty when applying them to the fossil tests of extinct groups. Many modern species show remarkable heterogeneity in their intra-test Mg distributions, typically due to the presence of high Mg bands, which have a biological origin. Importantly, banding patterns differ between species, which could affect Mg/Ca-temperature relationships. Few studies have looked at intra-test variability in Mg/Ca ratios in extinct species of foraminifera, despite the obvious implications for paleothermometry. We used electron probe microanalysis (EPMA) to investigate intra-test Mg distributions in the fossil tests of two species of planktonic foraminifera from the extinct muricate mixed-layer-dwelling genus Morozovella, commonly used in Paleogene sea surface temperature reconstructions. Both M. aragonensis and M. crater show striking Mg banding patterns with multiple high and low Mg/Ca band pairs throughout the test wall in all chambers. The intra-test Mg variability in M. aragonensis and M. crater is similar to that in modern species widely used in paleoclimate reconstructions and banding patterns are consistent with published growth models for modern forms, albeit with subtle differences. The presence of Mg bands supports the application of Mg/Ca-palaeothermometry in extinct Morozovella species as well as the utility of EPMA for examining preservation of foraminifera tests in paleoclimatological studies. However, we emphasize the importance of rigorous assessments of inter- and intra-test Mg variability when using microanalytical techniques for foraminiferal Mg/Ca paleothermometry
    corecore