8 research outputs found

    Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength

    Get PDF
    At the École Polytechnique « LULI » facility, we have measured the impulse coupling coefficient Cm (target momentum per joule of incident laser light) with several target materials in vacuum, at 1057 nm and 400 fs and 80 ps pulse duration. A total of 64 laser shots were completed in a two-week experimental campaign, divided between the two pulse durations and among the materials. Our main purpose was to resolve wide discrepancies among reported values for Cm in the 100 ps region, where many applications exist. A secondary purpose was to compare Cm at 400 fs and 80 ps pulse duration. The 80 ps pulse was obtained by partial compression. Materials were Al, Ta, W, Au, and POM (polyoxymethylene, trade name Delrin). One application of these results is to pulsed laser ablation propulsion in space, including space debris re-entry, where narrow ranges in Cm and specific impulse Isp spell the difference between dramatic and uneconomical performance. We had difficulty measuring mass loss from single shots. Imparted momentum in single laser shots was determined using pendulum deflection and photonic Doppler velocimetry. Cm was smaller at the 400 fs pulse duration than at 80 ps. To our surprise, Cm for Al at 80 ps was at most 30 N/MW with 30 kJ/m2 incident fluence. On the other extreme, polyoxymethylene (POM, trade name Delrin) demonstrated 770 N/MW under these conditions. Together, these results offer the possibility of designing a Cm value suited to an application, by mixing the materials appropriately

    Effects of self-generated electric and magnetic fields in laser-generated fast electron propagation in solid materials: Electric inhibition and beam pinching

    Get PDF
    We present some experimental results which demonstrate the presence of electric inhibition in the propagation of relativistic electrons generated by intense laser pulses, depending on target conductivity. The use of transparent targets and shadowgraphic techniques has made it possible to evidence electron jets moving at the speed of light, an indication of the presence of self-generated strong magnetic fields

    Transfers from Earth to LEO and LEO to interplanetary space using lasers

    Get PDF
    New data on some materials at 80ps pulse duration and 1057 nm wavelength give us the option of proportionally combining them to obtain arbitrary values between 35 (aluminum) and 800 N/MW (POM, polyoxymethylene) for momentum coupling coefficient Cm. Laser ablation physics lets us transfer to LEO from Earth, or to interplanetary space using repetitively pulsed lasers and Cm values appropriate for each mission. We discuss practical results for lifting small payloads from Earth to LEO, and space missions such as a cis-Mars orbit with associated laser system parameters

    Fast electron transport and heating in solid-density matter

    Get PDF
    Two experiments have been performed to investigate heating by high-intensity laser-generated electrons, in the context of studies of the fast ignitor approach to inertial confinement fusion (ICF). A new spectrometer and layered targets have been used to detect Kα emission from aluminum heated by a fast electron beam. Results show that a temperature of about 40 eV is reached in solid density aluminum up to a depth of about 100 μm

    Etude experimentale de la filamentation dans l'interaction laser-plasma a haut flux

    No full text
    INIST T 75949 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    Experimental Investigation of Laser and Materials Parameters for Space Debris Removal by Laser Solutions

    No full text
    Studies on laser Irradiation Parameters Show that, for an appropriate intensity, a short wavelength and short pulse length can lead to a coupling coefficient c_m maximized to produce an optimal mechanical pulse coupling, and to minimize the thermal load: Spacecraft and other objects can be propelled in this way
    corecore