2,266 research outputs found
Chronic training status affects muscle excitation of the vastus lateralis during repeated contractions
This study examined electromyographic amplitude (EMGRMS)-force relationships during repeated submaximal knee extensor muscle actions among chronic aerobically-(AT), resistance-trained (RT), and sedentary (SED) individuals. Fifteen adults (5/group) attempted 20 isometric trapezoidal muscle actions at 50% of maximal strength. Surface electromyography (EMG) was recorded from vastus lateralis (VL) during the muscle actions. For the first and last successfully completed contractions, linear regression models were fit to the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments, and the b terms (slope) and a terms (antilog of y-intercept) were calculated. EMGRMS was averaged during steady force. Only the AT completed all 20 muscle actions. During the first contraction, the b terms for RT (1.301 ± 0.197) were greater than AT (0.910 ± 0.123; p = 0.008) and SED (0.912 ± 0.162; p = 0.008) during the linearly increasing segment, and in comparison to the linearly decreasing segment (1.018 ± 0.139; p = 0.014), respectively. For the last contraction, the b terms for RT were greater than AT during the linearly increasing (RT = 1.373 ± 0.353; AT = 0.883 ± 0.129; p = 0.018) and decreasing (RT = 1.526 ± 0.328; AT = 0.970 ± 0.223; p = 0.010) segments. In addition, the b terms for SED increased from the linearly increasing (0.968 ± 0.144) to decreasing segment (1.268 ± 0.126; p = 0.015). There were no training, segment, or contraction differences for the a terms. EMGRMS during steady force increased from the first- ([64.08 ± 51.68] μV) to last-contraction ([86.73 ± 49.55] μV; p = 0.001) collapsed across training statuses. The b terms differentiated the rate of change for EMGRMS with increments in force among training groups, indicating greater muscle excitation to the motoneuron pool was necessary for the RT than AT during the linearly increasing and decreasing segments of a repetitive task
Solving Einstein's Equations With Dual Coordinate Frames
A method is introduced for solving Einstein's equations using two distinct
coordinate systems. The coordinate basis vectors associated with one system are
used to project out components of the metric and other fields, in analogy with
the way fields are projected onto an orthonormal tetrad basis. These field
components are then determined as functions of a second independent coordinate
system. The transformation to the second coordinate system can be thought of as
a mapping from the original ``inertial'' coordinate system to the computational
domain. This dual-coordinate method is used to perform stable numerical
evolutions of a black-hole spacetime using the generalized harmonic form of
Einstein's equations in coordinates that rotate with respect to the inertial
frame at infinity; such evolutions are found to be generically unstable using a
single rotating coordinate frame. The dual-coordinate method is also used here
to evolve binary black-hole spacetimes for several orbits. The great
flexibility of this method allows comoving coordinates to be adjusted with a
feedback control system that keeps the excision boundaries of the holes within
their respective apparent horizons.Comment: Updated to agree with published versio
Approaching the Coverability Problem Continuously
The coverability problem for Petri nets plays a central role in the
verification of concurrent shared-memory programs. However, its high
EXPSPACE-complete complexity poses a challenge when encountered in real-world
instances. In this paper, we develop a new approach to this problem which is
primarily based on applying forward coverability in continuous Petri nets as a
pruning criterion inside a backward coverability framework. A cornerstone of
our approach is the efficient encoding of a recently developed polynomial-time
algorithm for reachability in continuous Petri nets into SMT. We demonstrate
the effectiveness of our approach on standard benchmarks from the literature,
which shows that our approach decides significantly more instances than any
existing tool and is in addition often much faster, in particular on large
instances.Comment: 18 pages, 4 figure
Global entrainment of transcriptional systems to periodic inputs
This paper addresses the problem of giving conditions for transcriptional
systems to be globally entrained to external periodic inputs. By using
contraction theory, a powerful tool from dynamical systems theory, it is shown
that certain systems driven by external periodic signals have the property that
all solutions converge to a fixed limit cycle. General results are proved, and
the properties are verified in the specific case of some models of
transcriptional systems. The basic mathematical results needed from contraction
theory are proved in the paper, making it self-contained
Observability of Switched Linear Systems in Continuous Time
We study continuous-time switched linear systems with unobserved and exogeneous mode signals. We analyze the observability of the initial state and initial mode under arbitrary switching, and characterize both properties in both autonomous and non-autonomous cases
Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties
A shortcoming of existing reachability approaches for nonlinear systems is
the poor scalability with the number of continuous state variables. To mitigate
this problem we present a simulation-based approach where we first sample a
number of trajectories of the system and next establish bounds on the
convergence or divergence between the samples and neighboring trajectories. We
compute these bounds using contraction theory and reduce the conservatism by
partitioning the state vector into several components and analyzing contraction
properties separately in each direction. Among other benefits this allows us to
analyze the effect of constant but uncertain parameters by treating them as
state variables and partitioning them into a separate direction. We next
present a numerical procedure to search for weighted norms that yield a
prescribed contraction rate, which can be incorporated in the reachability
algorithm to adjust the weights to minimize the growth of the reachable set
A Characterization of Scale Invariant Responses in Enzymatic Networks
An ubiquitous property of biological sensory systems is adaptation: a step
increase in stimulus triggers an initial change in a biochemical or
physiological response, followed by a more gradual relaxation toward a basal,
pre-stimulus level. Adaptation helps maintain essential variables within
acceptable bounds and allows organisms to readjust themselves to an optimum and
non-saturating sensitivity range when faced with a prolonged change in their
environment. Recently, it was shown theoretically and experimentally that many
adapting systems, both at the organism and single-cell level, enjoy a
remarkable additional feature: scale invariance, meaning that the initial,
transient behavior remains (approximately) the same even when the background
signal level is scaled. In this work, we set out to investigate under what
conditions a broadly used model of biochemical enzymatic networks will exhibit
scale-invariant behavior. An exhaustive computational study led us to discover
a new property of surprising simplicity and generality, uniform linearizations
with fast output (ULFO), whose validity we show is both necessary and
sufficient for scale invariance of enzymatic networks. Based on this study, we
go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general
framework for understanding this phenomenon, and results in concrete
experimental predictions
How to humiliate and shame: A reporter's guide to the power of the mugshot
This is an Author's Accepted Manuscript of an article published in Social Semiotics, 24(1), 56-87, 2014, copyright Taylor & Francis, available online at: http://www.tandfonline.com/The judicial photograph – the “mugshot” – is a ubiquitous and instantly recognisable form, appearing in the news media, on the internet, on book covers, law enforcement noticeboards and in many other mediums. This essay attempts to situate the mugshot in a historical and theoretical context to explain the explicit and implicit meaning of the genre as it has developed, focussing in particular on their use in the UK media in late modernity. The analysis is based on the author's reflexive practice as a journalist covering crime in the national news media for 30 years and who has used mugshots to illustrate stories for their explicit and specific content. The author argues that the visual limitations of the standardised “head and shoulders” format of the mugshot make it a robust subject for analysing the changing meaning of images over time. With little variation in the image format, arguments for certain accreted layers of signification are easier to make. Within a few years of the first appearance of the mugshot form in the mid-19th century, it was adopted and adapted as a research tool by scientists and criminologists. While the positivist scientists claimed empirical objectivity we can now see that mugshots played a part in the construction of subjective notions of “the other”, “the lesser” or “sub-human” on the grounds of class, race and religion. These dehumanising ideas later informed the theorists and bureaucrats of National Socialist ideology from the 1920s to 1940s. The author concludes that once again the mugshot has become, in certain parts of the media, a signifier widely used to exclude or deride certain groups. In late modernity, the part of the media that most use mugshots – the tabloid press and increasingly tabloid TV – is part of a neo-liberal process that, in a conscious commercial appeal to the paying audience, seeks to separate rather than unify wider society
- …