292 research outputs found

    Incomplete pneumolysin oligomers form membrane pores

    No full text
    Pneumolysin is a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming proteins that are produced as water-soluble monomers or dimers, bind to target membranes and oligomerize into large ring-shaped assemblies comprising approximately 40 subunits and approximately 30 nm across. This pre-pore assembly then refolds to punch a large hole in the lipid bilayer. However, in addition to forming large pores, pneumolysin and other CDCs formsmaller lesions characterized by low electrical conductance. Owing to the observation of arc-like (rather than full-ring) oligomers by electron microscopy, it has been hypothesized that smaller oligomers explain smaller functional pores. To investigate whether this is the case, we performed cryo-electron tomography of pneumolysin oligomers on model lipid membranes. We then used sub-tomogram classification and averaging to determine representative membrane-bound low-resolution structures and identified pre-pores versus pores by the presence of membrane within the oligomeric curve. We found pre-pore and pore forms of both complete (ring) and incomplete (arc) oligomers and conclude that arc-shaped oligomeric assemblies of pneumolysin can form pores. As the CDCs are evolutionarily related to the membrane attack complex/perforin family of proteins, which also form variably sized pores, our findings are of relevance to that class of proteins as well

    Two separate mechanisms are involved in membrane permeabilization during lipid oxidation

    Get PDF
    Lipid oxidation is a universal degradative process of cell membrane lipids that is induced by oxidative stress and reactive oxygen and nitrogen species (RONS) in multiple pathophysiological situations. It has been shown that certain oxidized lipids alter membrane properties, leading to a loss of membrane function. Alteration of membrane properties is thought to depend on the initial membrane lipid composition, such as the number of acyl chain unsaturations. However, it is unclear how oxidative damage is related to biophysical properties of membranes. We therefore set out to quantify lipid oxidation through various analytical methods and determine key biophysical membrane parameters using model membranes containing lipids with different degrees of lipid unsaturation. As source for RONS, we used cold plasma, which is currently developed as treatment for infections and cancer. Our data revealed complex lipid oxidation that can lead to two main permeabilization mechanisms. The first one appears upon direct contact of membranes with RONS and depends on the formation of truncated oxidized phospholipids. These lipids seem to be partly released from the bilayer, implying that they are likely to interact with other membranes and potentially act as signaling molecules. This mechanism is independent of lipid unsaturation, does not rely on large variations in lipid packing, and is most probably mediated via short-living RONS. The second mechanism takes over after longer incubation periods and probably depends on the continued formation of lipid oxygen adducts such as lipid hydroperoxides or ketones. This mechanism depends on lipid unsaturation and involves large variations in lipid packing. This study indicates that polyunsaturated lipids, which are present in mammalian membranes rather than in bacteria, do not sensitize membranes to instant permeabilization by RONS but could promote long-term damage.</p

    Elevated Ratio of Urinary Metabolites of Thromboxane and Prostacyclin Is Associated with Adverse Cardiovascular Events in ADAPT

    Get PDF
    Results from prevention trials, including the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT), have fueled discussion about the cardiovascular (CV) risks associated with non-steroidal anti-inflammatory drugs (NSAIDs). We tested the hypotheses that (i) adverse CV events reported among ADAPT participants (aged 70 years and older) are associated with increased ratio of urine 11-dehydrothromboxane B2 (Tx-M) to 2′3-donor–6-keto-PGF1 (PGI-M) attributable to NSAID treatments; (ii) coincident use of aspirin (ASA) would attenuate NSAID-induced changes in Tx-M/PGI-M ratio; and (iii) use of NSAIDs and/or ASA would not alter urine or plasma concentrations of F2-isoprostanes (IsoPs), in vivo biomarkers of free radical damage. We quantified urine Tx-M and PGI-M, and urine and plasma F2-IsoPs from 315 ADAPT participants using stable isotope dilution assays with gas chromatography/mass spectrometry, and analyzed these data by randomized drug assignment and self-report compliance as well as ASA use. Adverse CV events were significantly associated with higher urine Tx-M/PGI-M ratio, which seemed to derive mainly from lowered PGI-M. Participants taking ASA alone had reduced urine Tx-M/PGI-M compared to no ASA or NSAID; however, participants taking NSAIDs plus ASA did not have reduced urine Tx-M/PGI-M ratio compared to NSAIDs alone. Neither NSAID nor ASA use altered plasma or urine F2-IsoPs. These data suggest a possible mechanism for the increased risk of CV events reported in ADAPT participants assigned to NSAIDs, and suggest that the changes in the Tx-M/PGI-M ratio was not substantively mitigated by coincident use of ASA in individuals 70 years or older

    Conserved molecular interactions in centriole-to-centrosome conversion.

    Get PDF
    Centrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle. Here we show that centriole-to-centrosome conversion requires sequential loading of Cep135, Ana1 (Cep295) and Asterless (Cep152) onto daughter centrioles during mitotic progression in both Drosophila melanogaster and human. This generates a molecular network spanning from the inner- to outermost parts of the centriole. Ana1 forms a molecular strut within the network, and its essential role can be substituted by an engineered fragment providing an alternative linkage between Asterless and Cep135. This conserved architectural framework is essential for loading Asterless or Cep152, the partner of the master regulator of centriole duplication, Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion that renders daughter centrioles competent for motherhood.J.F., Z.L., S.S. and N.S.D. are supported from Programme Grant to D.M.G. from Cancer Research UK. H.R. is supported from MRC Programme Grant to D.M.G. J.F. thank the British Academy and the Royal Society for Newton International Fellowship and Z.L. thanks the Federation of European Biochemical Societies for the Long-Term postdoctoral Fellowship. The authors thank Nicola Lawrence and Alex Sossick for assistance with 3D-SIM.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncb327

    Individual Liberty and the Importance of the Concept of the People

    Get PDF
    UID/FIL/00183/2013Through publically agreed laws that correspond to a common set of public restrictions, the ‘people as a sovereign body’ serves to protect against violations of individual liberty and despotic power. Where no such common body exists, individuals are deprived of this protection. In such cases, individuals must obey without liberty, while those in power command under a state of license. Neoliberal theorists maintain that any common personality, with its corresponding set of public and arbitrary positive and negative restrictions on liberty, undermines individual liberty. Neoliberal theory only allows for private restrictions on liberty. Against these neoliberal assumptions, we argue that rejecting public restrictions on liberty does not promote individual liberty. To the 1᢫ ᢬ ᢭ ᢮ 1 contrary, it creates conditions in which free individuals become servile and political inequality becomes entrenched, where citizens are divided into those who obey and those who command. Tracing the consequences of neoliberalism, we argue that unless we take seriously both the people as a political category and the right to equal and reciprocal coercion, individual liberty will be at risk. We also argue that neoliberalism ultimately leads to the total exclusion of certain citizens under the veil of full liberty. With the vanishing of the people’s will comes the utter disappearance of certain citizens, who live in the spontaneous society as if they were stateless or lawless persons. To better understand the connections between the rejection of the concept of the people, private restrictions on liberty and the fostering of the servile citizen, this paper considers the political philosophy of Hayek and Nozick. It also considers key ideas from Locke and Kant—theorists who, despite the differences between their philosophical perspectives, and despite the fact that they both provided crucial inspiration for Hayek’s political economy and Nozick’s libertarianism, stressed the protective role of the people with regard to individual liberty.publishersversionpublishe

    Outcomes of polytrauma patients with diabetes mellitus.

    Get PDF
    BACKGROUND: The impact of diabetes mellitus in patients with multiple system injuries remains obscure. This study was designed to increase knowledge of outcomes of polytrauma in patients who have diabetes mellitus. METHODS: Data from the Trauma Audit and Research Network was used to identify patients who had suffered polytrauma during 2003 to 2011. These patients were filtered to those with known outcomes, then separated into those with diabetes, those known to have other co-morbidities but not diabetes and those known not to have any co-morbidities or diabetes. The data were analyzed to establish if patients with diabetes had differing outcomes associated with their diabetes versus the other groups. RESULTS: In total, 222 patients had diabetes, 2,558 had no past medical co-morbidities (PMC), 2,709 had PMC but no diabetes. The diabetic group of patients was found to be older than the other groups (P <0.05). A higher mortality rate was found in the diabetic group compared to the non-PMC group (32.4% versus 12.9%), P <0.05). Rates of many complications including renal failure, myocardial infarction, acute respiratory distress syndrome, pulmonary embolism and deep vein thrombosis were all found to be higher in the diabetic group. CONCLUSIONS: Close monitoring of diabetic patients may result in improved outcomes. Tighter glycemic control and earlier intervention for complications may reduce mortality and morbidity

    An in vitro model of early anteroposterior organization during human development.

    Get PDF
    The body plan of the mammalian embryo is shaped through the process of gastrulation, an early developmental event that transforms an isotropic group of cells into an ensemble of tissues that is ordered with reference to three orthogonal axes1. Although model organisms have provided much insight into this process, we know very little about gastrulation in humans, owing to the difficulty of obtaining embryos at such early stages of development and the ethical and technical restrictions that limit the feasibility of observing gastrulation ex vivo2. Here we show that human embryonic stem cells can be used to generate gastruloids-three-dimensional multicellular aggregates that differentiate to form derivatives of the three germ layers organized spatiotemporally, without additional extra-embryonic tissues. Human gastruloids undergo elongation along an anteroposterior axis, and we use spatial transcriptomics to show that they exhibit patterned gene expression. This includes a signature of somitogenesis that suggests that 72-h human gastruloids show some features of Carnegie-stage-9 embryos3. Our study represents an experimentally tractable model system to reveal and examine human-specific regulatory processes that occur during axial organization in early development

    \u3cem\u3eABCC9\u3c/em\u3e Gene Polymorphism Is Associated with Hippocampal Sclerosis of Aging Pathology

    Get PDF
    Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer\u27s Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer\u27s Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer\u27s Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10-9), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor

    Diabetes Is Associated with Cerebrovascular but not Alzheimer\u27s Disease Neuropathology

    Get PDF
    INTRODUCTION: The relationship of diabetes to specific neuropathologic causes of dementia is incompletely understood. METHODS: We used logistic regression to evaluate the association between diabetes and infarcts, Braak neurofibrillary tangle stage, and neuritic plaque score in 2365 autopsied persons. In a subset of \u3e1300 persons with available cognitive data, we examined the association between diabetes and cognition using Poisson regression. RESULTS: Diabetes increased odds of brain infarcts (odds ratio [OR] = 1.57, P \u3c .0001), specifically lacunes (OR = 1.71, P \u3c .0001), but not Alzheimer\u27s disease neuropathology. Diabetes plus infarcts was associated with lower cognitive scores at end of life than infarcts or diabetes alone, and diabetes plus high level of Alzheimer\u27s neuropathologic changes was associated with lower mini-mental state examination scores than the pathology alone. DISCUSSION: This study supports the conclusions that diabetes increases the risk of cerebrovascular but not Alzheimer\u27s disease pathology, and at least some of diabetes\u27 relationship to cognitive impairment may be modified by neuropathology
    • …
    corecore