283 research outputs found

    Sirdavidia, an extroardinary new genus of Annonaceae from Gabon

    Get PDF
    A distinctive new monotypic genus from Gabon is described in the tropical plant family Annonaceae: Sirdavidia, in honor to Sir David Attenborough. Molecular phylogenetic analyses confirm that Sirdavidia, which is very distinct from a morphological standpoint, is not nested in any existing genus of Annonaceae and belongs to tribe Piptostigmateae (subfamily Malmeoideae), which now contains a total of six genera. The genus is characterized by long acuminate leaves, fully reflexed red petals, 16–19 bright yellow, loosely arranged stamens forming a cone, and a single carpel topped by a conspicuous stigma. With just three known collections, a preliminary IUCN conservation status assessment is provided as “endangered” as well as a distribution map. The discovery of Sirdavidia is remarkable at several levels. First, it was collected near the road in one of the botanically best-known regions of Gabon: Monts de Cristal National Park. Second, its sister group is the genus Mwasumbia, also monotypic, endemic to a small area in a forest in Tanzania, some 3000 km away. Finally, the floral morphology is highly suggestive of a buzz pollination syndrome. If confirmed, this would be the first documentation of such a pollination syndrome in Magnoliidae and early-diverging angiosperms in general

    Kupeantha (Coffeeae, Rubiaceae), a new genus from Cameroon and Equatorial Guinea

    Get PDF
    Two new coffee relatives (tribe Coffeeae, Rubiaceae), discovered during botanical expeditions to Cameroon, are examined for generic placement, and the placement of three previously known species (Argocoffeopsis fosimondi, A. spathulata and Calycosiphonia pentamera) is reinvestigated using plastid sequence (accD-psa1, rpl16, trnL-F) and morphological data. Seed biochemistry of the new species and pollen micromorphology (only one of the two species) are also studied. Based on the plastid sequence data, the new taxa are nested in a wellsupported monophyletic group that includes Argocoffeopsis and Calycosiphonia. Within this clade, three well-supported subclades are recovered that are morphologically easy to diagnose: (1) Calycosiphonia (excluding C. pentamera), (2) Argocoffeopsis (excluding A. fosimondi and A. spathulata), and (3) a clade including the above excluded species, in addition to the new species. Based on the results, Kupeantha, a new genus of five species, is described, including two new Critically Endangered taxa from the Highlands of Cameroon: Kupeantha ebo and K. kupensis. Phytochemical analysis of Kupeantha seeds reveals compounds assigned as hydroxycinnamic acid derivatives, amino acids and ent-kaurane diterpenoids; caffeine was not detected. Kupeantha is the first new genus described in tribe Coffeeae in 40 years

    A checklist of rheophytes of Cameroon

    Get PDF
    Rivers in Cameroon were surveyed to collect and document rheophytic plants. Rheophytes are the dominant aquatic macrophytes in tropical river systems, where they are adapted to extreme environments of rushing water (e.g., river rapids, waterfalls and flash floods). Rheophytic plants are useful indicators of river health. However, their habitats are threatened by human activities such as agriculture, plantation development, alluvial mining and dam construction, particularly in tropical countries. In this survey we documented 66 rheophytic species in 29 genera and 16 families. Two ferns, 8 monocotyledons and 56 dicotyledons were listed. Apart from the Podostemaceae family in which all species are rheophytic, the other 15 families have few species which are rheophytic. Five of these families have up to four species and the remaining 10 have only one member as a rheophytic species. The conservation status of each species is assessed and discussed. This work urges botanists, conservationists, and policy makers to do more to protect the habitats of rheophytes and put in place strategies and action plans for the conservation of this important biological group

    Three new species of Tricalysia (Rubiaceae) from Atlantic Central Africa

    Get PDF
    Background and aims – The genus Tricalysia A.Rich. (Rubiaceae), regarded here in the strict sense (i.e., excluding Empogona Hook.f.), includes 77 species in tropical Africa, Madagascar and the Comoros. In the current paper, three new species from Atlantic Central Africa are described and illustrated; their conservation status is also assessed.Material and methods – This paper is based on a study of herbarium collections from BR, BRLU, K, LBV, P, WAG and YA. Normal practices of herbarium taxonomy have been applied. The conservation status assessments follow the IUCN Red List criteria.Results – Tricalysia lophocarpa O.Lachenaud & Sonké is endemic to Gabon and is best recognised by its fruits with 8–10 narrow longitudinal ribs. Tricalysia obovata O.Lachenaud & Sonké is endemic to Equatorial Guinea (Rio Muni) and may be recognised by its obovate leaves with rounded base, glabrous stems, and sessile flowers with included style and half-exserted anthers. Tricalysia wilksii O.Lachenaud & Sonké occurs in Gabon and southwestern Republic of Congo, and may be recognised by its glabrous stems and leaves, the latter with crypt domatia, its linear calyx teeth equalling or exceeding the tube in length, and its shortly pedicellate fruits. The three species are assessed respectively as Near-threatened (T. lophocarpa), Critically Endangered (T. obovata) and Vulnerable (T. wilksii)

    Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon

    Get PDF
    Journal ArticleThe final publication is available at Springer via http://dx.doi.org/10.1007/s00442-015-3250-5Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were—on average—slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.Natural Environment Research Council (NERC) TROBIT consortiumRoyal Society - University Research Fellowshi

    Two new species of Raphia (Palmae/Arecaceae) from Cameroon and Gabon

    Get PDF
    Raphia (Arecaceae, Calamoideae) is the most diverse genus of African palms with around 20 species. Two new species from Cameroon and Gabon, Raphia gabonica Mogue, Sonké & Couvreur, sp. nov. and Raphia zamiana Mogue, Sonké & Couvreur, sp. nov. are described and illustrated. Their affinities are discussed and the conservation status of each species is assessed. For both species, distribution maps are provided. Raphia gabonica is restricted to two small populations from central Gabon, where it occurs on hillsides on tierra firme soil, and close to small streams. Its preliminary IUCN status is Endangered, being amongst the five most threatened palm species in Africa. Raphia gabonica potentially belongs to the moniliform section. Raphia zamiana is largely distributed from south Cameroon to south Gabon and is very common. It is also a multi-used palm, from which wine, grubs and construction material are extracted and sold. It generally occurs in large stands in a wide range of ecosystems such as swamps, coastal forests on partially inundated sandy soils and inundated savannahs. Its large stature, hard to access habitat (swamps) and abundant presence might have discouraged botanists to collect it until now. Raphia zamiana belongs to the taxonomically complex raphiate section

    A matter of warts: a taxonomic treatment for Drypetes verrucosa (Putranjivaceae, Malpighiales) and a new cauliflorous species from Cameroon and Nigeria, D. stevartii

    Get PDF
    Background and aims – Specimens of a new tree species in the genus Drypetes (Putranjivaceae) distributed in Cameroon and eastern Nigeria, D. stevartii, were associated with D. verrucosa, another tree species endemic to Gabon, due to its warty fruits and to the overall morphological resemblances of both species. Material and methods – The present study is based on the study of 20 gatherings of D. verrucosa and 26 gatherings of D. stevartii. Morphological observations on herbarium specimens belonging to the new species and D. verrucosa were carried out in order to describe them. Key results – This treatment includes the detailed descriptions of these two species, the typification of their names, a comparative table summarizing their main morphological differences, an identification key, photographs of both, as well as information about their distribution, habitat, and phenology. Preliminary IUCN Red List assessments show that both D. verrucosa and D. stevartii are ‘Near Threatened’ species

    Foliar trait contrasts between African forest and savanna trees: Genetic versus environmental effects

    Get PDF
    Journal ArticleVariations in leaf mass per unit area (Ma) and foliar concentrations of N, P, C, K, Mg and Ca were determined for 365 trees growing in 23 plots along a West African precipitation gradient ranging from 0.29 to 1.62m a-1. Contrary to previous studies, no marked increase in Ma with declining precipitation was observed, but savanna tree foliar [N] tended to be higher at the drier sites (mass basis). Generally, Ma was slightly higher and [N] slightly lower for forest vs savanna trees with most of this difference attributable to differences in soil chemistry. No systematic variations in [P], [Mg] and [Ca] with precipitation or between trees of forest vs savanna stands were observed. We did, however, find a marked increase in foliar [K] of savanna trees as precipitation declined, with savanna trees also having a significantly lower [K] than those of nearby forest. These differences were not related to differences in soil nutrient status and were accompanied by systematic changes in [C] of opposite sign. We suggest an important but as yet unidentified role for K in the adaption of savanna species to periods of limited water availability; with foliar [K] being also an important factor differentiating tree species adapted to forest vs savanna soils within the 'zone of transition' of Western Africa.Natural Environment Research Council TROBIT Consortium projectRoyal Society - University Research Fellowshi
    corecore