264 research outputs found

    Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson's disease

    Get PDF
    The need for an early and differential diagnosis of Parkinson's disease (PD) is undoubtedly one of the main quests of the century. An early biomarker would enable therapy to begin sooner and would, hopefully, slow or better prevent progression of the disease. We performed transcript profiling via quantitative RT-PCR in RNA originating from peripheral blood samples. The groups were de novo (n=11) and medicated PD (n=94) subjects and healthy controls (n=34), while for negative control Alzheimer's disease (AD; n=14) subjects were recruited as an additional neurodegenerative disease. The results were retested on a second recruitment consisting 22 medicated PD subjects versus 33 controls and 12 AD. Twelve transcripts were chosen as candidate genes, according to previous postmortem brain profiling. Multiple analyses resulted in four significant genes: proteasome (prosome, macropain) subunit-alpha type-2 (PSMA2; p=0.0002, OR=1.15 95% CI 1.07-1.24), laminin, beta-2 (laminin S) (LAMB2; p=0.0078, OR=2.26 95% CI 1.24-4.14), aldehyde dehydrogenase 1 family-member A1 (ALDH1A1; p=0.016, OR=1.05 95% CI 1.01-1.1), and histone cluster-1 H3e (HIST1H3E; p=0.03, OR=0.975 95% CI 0.953-0.998) differentiating between medicated PD subjects versus controls. Using these four biomarkers for PD diagnosis, we achieved sensitivity and specificity of more than 80%. These biomarkers might be specific for PD diagnosis, since in AD subjects no significant results were observed. In the second validation, three genes (PSMA2, LAMB2 and ALDH1A1) demonstrated high reproducibility. This result supports previous studies of gene expression profiling and may facilitate the development of biomarkers for early diagnosis of P

    Identification and Characterization of HTLV-1 HBZ Post-Translational Modifications

    Get PDF
    Human T-cell leukemia virus type-1 (HTLV-1) is estimated to infect 15–25 million people worldwide, with several areas including southern Japan and the Caribbean basin being endemic. The virus is the etiological agent of debilitating and fatal diseases, for which there is currently no long-term cure. In the majority of cases of leukemia caused by HTLV-1, only a single viral gene, hbz, and its cognate protein, HBZ, are expressed and their importance is increasingly being recognized in the development of HTLV-1-associated disease. We hypothesized that HBZ, like other HTLV-1 proteins, has properties and functions regulated by post-translational modifications (PTMs) that affect specific signaling pathways important for disease development. To date, PTM of HBZ has not been described. We used an affinity-tagged protein and mass spectrometry method to identify seven modifications of HBZ for the first time. We examined how these PTMs affected the ability of HBZ to modulate several pathways, as measured using luciferase reporter assays. Herein, we report that none of the identified PTMs affected HBZ stability or its regulation of tested pathways

    Investigating Alaskan Methane and Carbon Dioxide Fluxes Using Measurements from the CARVE Tower

    Get PDF
    Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Because the near-surface atmosphere integrates surface fluxes over large ( ∼ 500–1000 km) scales, atmospheric monitoring of carbon dioxide (CO2) and methane (CH4) mole fractions in the daytime mixed layer is a promising method for detecting change in the carbon cycle throughout boreal Alaska. Here we use CO2 and CH4 measurements from a NOAA tower 17 km north of Fairbanks, AK, established as part of NASA\u27s Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), to investigate regional fluxes of CO2 and CH4 for 2012–2014. CARVE was designed to use aircraft and surface observations to better understand and quantify the sensitivity of Alaskan carbon fluxes to climate variability. We use high-resolution meteorological fields from the Polar Weather Research and Forecasting (WRF) model coupled with the Stochastic Time-Inverted Lagrangian Transport model (hereafter, WRF-STILT), along with the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM), to investigate fluxes of CO2 in boreal Alaska using the tower observations, which are sensitive to large areas of central Alaska. We show that simulated PolarVPRM–WRF-STILT CO2 mole fractions show remarkably good agreement with tower observations, suggesting that the WRF-STILT model represents the meteorology of the region quite well, and that the PolarVPRM flux magnitudes and spatial distribution are generally consistent with CO2 mole fractions observed at the CARVE tower. One exception to this good agreement is that during the fall of all 3 years, PolarVPRM cannot reproduce the observed CO2 respiration. Using the WRF-STILT model, we find that average CH4 fluxes in boreal Alaska are somewhat lower than flux estimates by Chang et al. (2014) over all of Alaska for May–September 2012; we also find that enhancements appear to persist during some wintertime periods, augmenting those observed during the summer and fall. The possibility of significant fall and winter CO2 and CH4 fluxes underscores the need for year-round in situ observations to quantify changes in boreal Alaskan annual carbon balance

    “Genes”

    Get PDF
    In order to describe a cell at molecular level, a notion of a “gene” is neither necessary nor helpful. It is sufficient to consider the molecules (i.e., chromosomes, transcripts, proteins) and their interactions to describe cellular processes. The downside of the resulting high resolution is that it becomes very tedious to address features on the organismal and phenotypic levels with a language based on molecular terms. Looking for the missing link between biological disciplines dealing with different levels of biological organization, we suggest to return to the original intent behind the term “gene”. To this end, we propose to investigate whether a useful notion of “gene” can be constructed based on an underlying notion of function, and whether this can serve as the necessary link and embed the various distinct gene concepts of biological (sub)disciplines in a coherent theoretical framework. In reply to the Genon Theory recently put forward by Klaus Scherrer and Jürgen Jost in this journal, we shall discuss a general approach to assess a gene definition that should then be tested for its expressiveness and potential cross-disciplinary relevance

    Spread of Makoyoh’sokoi (Wolf Trail): a community led, physical activity-based, holistic wellness program for Indigenous women in Canada

    Get PDF
    Abstract Globally, Indigenous populations have been impacted by colonization. Populations who have endured colonization are at higher risk of developing chronic diseases. Canada’s Truth and Reconciliation Commission emphasizes reducing barriers to participation in physical activity and recommends the creation of culturally relevant and supportive policies and programing. Physical activity is a cornerstone in health promotion and public health to combat chronic diseases; however, in Canada, Indigenous developed physical activity programing is sparse, and those targeting women are non-existent in some regions. Makoyoh'sokoi (The Wolf Trail Program) is an 18-week long, holistic wellness program that was created by and for Indigenous women. Makoyoh'sokoi was developed by communities following extensive consultation and cultural oversight. Makoyoh'sokoi’s core program consists of 12 weeks of weekly physical activity programing and health education, followed by another 6 weeks of weekly health education. Notably, communities have control over the program to modify based on individual needs and challenges. Programs commence and conclude with a ceremony with Elders giving a blessing and opening each other to connection. The goals of Makoyoh'sokoi are to empower women, improve health outcomes, and to implement a sustainable program by training a network of community members in their respective communities to facilitate delivery

    An Agenda for Open Science in Communication

    Get PDF
    In the last 10 years, many canonical findings in the social sciences appear unreliable. This so-called “replication crisis” has spurred calls for open science practices, which aim to increase the reproducibility, replicability, and generalizability of findings. Communication research is subject to many of the same challenges that have caused low replicability in other fields. As a result, we propose an agenda for adopting open science practices in Communication, which includes the following seven suggestions: (1) publish materials, data, and code; (2) preregister studies and submit registered reports; (3) conduct replications; (4) collaborate; (5) foster open science skills; (6) implement Transparency and Openness Promotion Guidelines; and (7) incentivize open science practices. Although in our agenda we focus mostly on quantitative research, we also reflect on open science practices relevant to qualitative research. We conclude by discussing potential objections and concerns associated with open science practices

    Mapping the Fungal Battlefield: Using in situ Chemistry and Deletion Mutants to Monitor Interspecific Chemical Interactions Between Fungi

    Get PDF
    Fungi grow in competitive environments, and to cope, they have evolved strategies, such as the ability to produce a wide range of secondary metabolites. This begs two related questions. First, how do secondary metabolites influence fungal ecology and interspecific interactions? Second, can these interspecific interactions provide a way to “see” how fungi respond, chemically, within a competitive environment? To evaluate these, and to gain insight into the secondary metabolic arsenal fungi possess, we co-cultured Aspergillus fischeri, a genetically tractable fungus that produces a suite of mycotoxins, with Xylaria cubensis, a fungus that produces the fungistatic compound and FDA-approved drug, griseofulvin. To monitor and characterize fungal chemistry in situ, we used the droplet-liquid microjunction-surface sampling probe (droplet probe). The droplet probe makes a microextraction at defined locations on the surface of the co-culture, followed by analysis of the secondary metabolite profile via liquid chromatography-mass spectrometry. Using this, we mapped and compared the spatial profiles of secondary metabolites from both fungi in monoculture versus co-culture. X. cubensis predominantly biosynthesized griseofulvin and dechlorogriseofulvin in monoculture. In contrast, under co-culture conditions a deadlock was formed between the two fungi, and X. cubensis biosynthesized the same two secondary metabolites, along with dechloro-5′-hydroxygriseofulvin and 5′-hydroxygriseofulvin, all of which have fungistatic properties, as well as mycotoxins like cytochalasin D and cytochalasin C. In contrast, in co-culture, A. fischeri increased the production of the mycotoxins fumitremorgin B and verruculogen, but otherwise remained unchanged relative to its monoculture. To evaluate that secondary metabolites play an important role in defense and territory establishment, we co-cultured A. fischeri lacking the master regulator of secondary metabolism laeA with X. cubensis. We found that the reduced secondary metabolite biosynthesis of the ΔlaeA strain of A. fischeri eliminated the organism’s ability to compete in co-culture and led to its displacement by X. cubensis. These results demonstrate the potential of in situ chemical analysis and deletion mutant approaches for shedding light on the ecological roles of secondary metabolites and how they influence fungal ecological strategies; co-culturing may also stimulate the biosynthesis of secondary metabolites that are not produced in monoculture in the laboratory
    corecore