11 research outputs found

    Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions

    Get PDF
    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant’s responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 μg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development

    Durand et al 2012 Supplemental figures

    Get PDF
    Objective. Our objective was to compare the osteoclastogenic capacity of peripheral blood mononuclear cells (PBMCs) from patients with osteoarthritis (OA) to that of PBMCs from self-reported normal individuals. Methods. PBMCs from 140 patients with OA and 45 healthy donors were assayed for CD14+ expression and induced to differentiate into osteoclasts (OCs) over 3 weeks in vitro. We assessed the number of the OCs, their resorptive activity, OC apoptosis, and expression of the following cytokine receptors: receptor activator of nuclear factor κB (RANK), interleukin-1 receptor type I (IL-1R1) and IL-1R2. A ridge logistic regression classifier was developed to discriminate OA patients from controls. Results. PBMCs from OA patients gave rise to more OCs that resorbed more bone surface than did PBMCs from controls. The number of CD14+ precursors was comparable in both groups, but there was less apoptosis in OCs obtained from OA patients. Although no correlation was found between osteoclastogenic capacity and clinical or radiologic scores, levels of IL-1R1 were significantly lower in cultures from patients with OA compared to controls. OC apoptosis and expression levels of IL-1R1 and IL-1R2 were used to build a multivariate predictive model for OA. Conclusion. During 3 weeks of culture under identical conditions, monocytes from patients with OA display enhanced capacity to generate OCs compared to cells from controls. Enhanced osteoclastogenesis is accompanied by increased resorptive activity, reduced OC apoptosis and diminished IL-1R1 expression. These findings support the possibility that generalized changes in bone metabolism affecting OCs participate in the pathophysiology of OA

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Comparative effectiveness of exogenous organic amendments on soil fertility, growth, photosynthesis and heavy metal accumulation in cereal crops

    No full text
    With soil fertility loss reached a critical state in arid and semi-arid regions, farmers are constrained to use mineral fertilizers, which are costly, non-eco-friendly and less effective in improving soil fertility than organic fertilizers such as dewatered sewage sludge (SS) and poultry manure (PM). In this regard, the current study aimed to highlight through experiments the positive effect of SS and PM applications on soil fertility and durum wheat growth. It targeted to demonstrate the safe and wise use of organic fertilization while assessing heavy metals in both soil and plant. The experiment was carried out in two batches of thirty-two pots, one for each treatment (SS and PM), in addition to the control with no fertilization. SS and PM were applied separately in three doses (D1 = 50 g, D2 = 100 g, and D3 = 200 g DM fertilizer/pot). The applications of both SS and PM induced a significant increase in plant-available phosphorus, organic matter, nitrates, moisture and electrical conductivity in soil, where these improvements were higher in PM compared to SS treatment. A significant accumulation of proline associated with an increase in biomass that were both proportional with fertilizer dose levels. Our findings revealed a loss in relative water content and leaf area of the plant. Correlations showed several significant relationships between soil parameters studied. The dose D2 of each fertilizer was the most efficient to improving both soil properties and plant components. Plant zinc concentration increased significantly with increase in soil zinc in PM amendments, however it decreased in SS. These relationships were not significant in copper for the two fertilizers. Both SS and PM improved soil fertility and plant growth compared to the control, thus this practice is a promising solution to tackle soil fertility loss and low production in drylands

    Enhancing soil resilience and crop physiology with biochar application for mitigating drought stress in durum wheat (Triticum durum)

    No full text
    The use of biochar has recently garnered significant attention as an agricultural management technique highly endorsed by the scientific community. Biochar, owing to its high carbon content, contributes to increased organic matter storage in the soil, consequently enhancing crop growth. This study aimed to elucidate changes in physicochemical soil fertility and durum wheat (Triticum durum) var. Vitron production under the influence of three biochar doses (0 g/kg, 5 g/kg, and 15 g/kg of soil) in combination with varying levels of drought stress (100 %, 80 %, 40 %, and 20 % of field capacity 'FC'). Notably, we observed a substantial increase in all physicochemical soil parameters, except for active calcium carbonate equivalent (ACCE), which displayed lower values (8.78 ± 1.43 %) in soils treated with biochar compared to control soil (15.69 ± 4.03 %). The biochar dose of 5 g/kg yielded the highest moisture content (8.81 %) and pH value (7.83). However, the highest organic matter content (4.89 ± 0.17 %) and total calcium carbonate equivalent ‘TCCE’ (3.67 ± 0.48 %) were observed with the dose 15 g/kg. Nevertheless, regarding plant growth, no improvements were observed in terms of height and above-ground biomass (AGB). Conversely, leaf surface area exhibited significant changes with biochar application, along with an increase in chlorophyll pigment content. On the other hand, drought stress significantly hindered plant height, AGB, and leaf water reserves, resulting in values of 13.48 ± 1.60 cm, 1.57 ± 0.31g/plant, and 41.79 ± 1.67 %, respectively. The interaction between biochar and water stress appeared to mitigate and limit the impact of stress. Notably, an enhancement in organic matter storage and soil water reserves was observed. For example, the moisture content in the control soil was 6.95 %, while it increased to 12.76 % for 15g biochar/kg and 80 % FC. A similar trend was observed for organic matter, TCCE, and electrical conductivity. This effect positively influenced chlorophyll a and b content, as well as leaf water content. However, when stress was combined with biochar amendment, plant height and AGB decreased. The addition of biochar improved soil fertility and physiological parameters of wheat plants. Nevertheless, when combined with water stress, especially in cases of reduced water reserves, productivity did not witness any significant improvements

    Characteristics of a New X-Ray Imaging System for Interventional Procedures : Improved Image Quality and Reduced Radiation Dose

    No full text
    Purpose To compare image quality and radiation exposure between a new angiographic imaging system and the preceding generation system during uterine artery embolization (UAE). Materials and Methods In this retrospective, IRB-approved two-arm study, 54 patients with symptomatic uterine fibroids were treated with UAE on two different angiographic imaging systems. The new system includes optimized acquisition parameters and real-time image processing algorithms. Air kerma (AK), dose area product (DAP) and acquisition time for digital fluoroscopy (DF) and digital subtraction angiography (DSA) were recorded. Body mass index was noted as well. DF image quality was assessed objectively by image noise measurements. DSA image quality was rated by two blinded, independent readers on a four-rank scale. Statistical differences were assessed with unpaired t tests and Wilcoxon rank-sum tests. Results There was no significant difference between the patients treated on the new (n = 36) and the old system (n = 18) regarding age (p = 0.10), BMI (p = 0.18), DF time (p = 0.35) and DSA time (p = 0.17). The new system significantly reduced the cumulative AK and DAP by 64 and 72%, respectively (median 0.58 Gy and 145.9 Gy*cm2 vs. 1.62 Gy and 526.8 Gy*cm2, p < 0.01 for both). Specifically, DAP for DF and DSA decreased by 59% (75.3 vs. 181.9 Gy*cm2, p < 0.01) and 78% (67.6 vs. 312.2 Gy*cm2, p < 0.01), respectively. The new system achieved a significant decrease in DF image noise (p < 0.01) and a significantly better DSA image quality (p < 0.01). Conclusions The new angiographic imaging system significantly improved image quality and reduced radiation exposure during UAE procedures.(VLID)357422

    Improved Visibility of Metastatic Disease in the Liver During Intra-Arterial Therapy Using Delayed Arterial Phase Cone-Beam CT

    Get PDF
    PURPOSE: To compare the visibility of liver metastases on dual-phase cone-beam CT (DP-CBCT) and digital subtraction angiography (DSA), with reference to preinterventional contrast-enhanced magnetic resonance imaging (CE-MRI) of the liver. METHODS: This IRB-approved, retrospective study included 28 patients with neuroendocrine (NELM), colorectal (CRCLM), or sarcoma (SLM) liver metastases who underwent DP-CBCT during intra-arterial therapy (IAT) between 01/2010 and 10/2014. DP-CBCT was acquired after a single contrast agent injection in the tumor-feeding arteries at early and delayed arterial phases (EAP and DAP). The visibility of each lesion was graded by two radiologists in consensus on a three-rank scale (complete, partial, none) on DP-CBCT and DSA images using CE-MRI as reference. RESULTS: 47 NELM, 43 CRCLM, and 16 SLM were included. On DSA 85.1, 44.1, and 37.5 % of NELM, CRCLM, and SLM, were at least partially depicted, respectively. EAP-CBCT yielded significantly higher sensitivities of 88.3 and 87.5 % for CRCLM and SLM, respectively (p < 0.01), but not for NELM (89.4 %; p = 1.0). On DAP-CBCT all NELM, CRCLM, and SLM were visible (p < 0.001). Complete depiction was achieved on DSA for 59.6, 16.3, and 18.8 % of NELM, CRCLM, and SLM, respectively. The complete depiction rate on EAP-CBCT was significantly higher for CRCLM (46.5 %; p < 0.001), lower for NELM (40.4 %; p = 0.592), and similar for SLM (25 %, p = 0.399). On DAP-CBCT however, the highest rates of complete depiction were found—NELM (97.8 %; p = 0.008), CRCLM (95.3 %; p = 0.008), and SLM (100 %; p < 0.001). CONCLUSION: DAP-CBCT substantially improved the visibility of liver metastases during IAT. Future studies need to evaluate the clinical impact
    corecore