9 research outputs found

    Toxicity of the diatom genus Pseudo-nitzschia (Bacillariophyceae)

    Full text link
    Diatoms of the genus Pseudo-nitzschia H. Peragallo are known to produce domoic acid (DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often classified as both toxic and nontoxic, and it is largely unknown whether this difference is also genetic. In the Northern Adriatic Sea, there are virtually no cases of ASP, but DA occasionally occurs in shellfish samples. So far, three species—P. delicatissima (Cleve) Heiden, P. multistriata (H. Takano) H. Takano, and P. calliantha Lundholm, Moestrup, & Hasle—have been identified as producers of DA in the Adriatic Sea. By means of enzme-linked immunosorbent assay (ELISA), high-performance liquid chromatography with UV and visible spectrum detection (HPLC-UV/VIS), and liquid chromatography with tandem mass spectrometry (LC-MS/MS), we reconfirmed the presence of DA in P. multistriata and P. delicatissima and detect for the first time in the Adriatic Sea DA in P. galaxiae Lundholm, & Moestrup. Furthermore, we attempted to answer the question of the distribution of DA production among Pseudo-nitzschia species and strains by sequencing the internal transcribed spacer (ITS) phylogenetic marker and the dabA DA biosynthesis gene and coupling this with toxicity data. Results show that all subclades of the Pseudo-nitzschia genus contain toxic species and that toxicity appears to be strain dependent, often with geographic partitioning. Amplification of dabA was successful only in toxic strains of P. multistriata and the presence of the genetic architecture for DA production in non-toxic strains was thus not confirmed

    Development of a data dependent acquisition-based approach for the identification of unknown fast-acting toxins and their ester metabolites

    No full text
    Phycotoxins in the marine food-web represent a serious threat to human health. Consumption of contaminated shellfish and/or finfish poses risk to consumer safety: several cases of toxins-related seafood poisoning have been recorded so far worldwide. Cyclic imines are emerging lipophilic toxins, which have been detected in shellfish from different European countries. Currently, they are not regulated due to the lack of toxicological comprehensive data and hence the European Food Safety Authority has required more scientific efforts before establishing a maximum permitted level in seafood. In this work, a novel data dependent liquid chromatography – high resolution mass spectrometry (LC-HRMS) approach has been successfully applied and combined with targeted studies for an in-depth investigation of the metabolic profile of shellfish samples. The proposed analytical methodology has allowed: i) to discover a plethora of unknown fatty acid esters of gymnodimines and ii) to conceive a brand new MS-based strategy, termed as backward analysis, for discovery and identification of new analogues. In particular, the implemented analytical workflow has broadened the structural diversity of cyclic imine family through the inclusion of five new congeners, namely gymnodimine –F, -G, –H, –I and -J. In addition, gymnodimine A (376.5 μg/kg), 13-desmethyl spirolide C (11.0–29.0 μg/kg) and pinnatoxin G (3.1–7.7 μg/kg) have been detected in shellfish from different sites of the Mediterranean basin (Tunisia and Italy) and the Atlantic coast of Spain, with the confirmation of the first finding of pinnatoxin G in mussels harvested in Sardinia (Tyrrhenian Sea, Italy)

    Microbiological and Toxicological Investigations on Bivalve Molluscs Farmed in Sicily

    No full text
    Bivalves can concentrate biological and chemical pollutants, causing foodborne outbreaks whose occurrence is increasing, due to climatic and anthropic factors that are difficult to reverse, hence the need for improved surveillance. This study aimed to evaluate the hygienic qualities of bivalves sampled along the production and distribution chain in Sicily and collect useful data for consumer safety. Bacteriological and molecular analyses were performed on 254 samples of bivalves for the detection of enteropathogenic Vibrio, Arcobacter spp., Aeromonas spp., Salmonella spp., and beta-glucuronidase-positive Escherichia coli. A total of 96 out of 254 samples, collected in the production areas, were processed for algal biotoxins and heavy metals detection. Bacterial and algal contaminations were also assessed for 21 samples of water from aquaculture implants. Vibrio spp., Arcobacter spp., Aeromonas hydrophila, Salmonella spp., and Escherichia coli were detected in 106/254, 79/254, 12/254, 16/254, and 95/254 molluscs, respectively. A total of 10/96 bivalves tested positive for algal biotoxins, and metals were under the legal limit. V. alginolyticus, A. butzleri, and E. coli were detected in 5, 3, and 3 water samples, respectively. Alexandrium minutum, Dinophysis acuminata, Lingulodinium polyedra, and Pseudonitzschia spp. were detected in water samples collected with the biotoxin-containing molluscs. Traces of yessotoxins were detected in molluscs from water samples containing the corresponding producing algae. Despite the strict regulation by the European Commission over shellfish supply chain monitoring, our analyses highlighted the need for efficiency improvement

    A High Throughput Screening HPLC-FLD Method for Paralytic Shellfish Toxins (PSTs) Enabling Effective Official Control

    No full text
    Paralytic Shellfish Toxins (PSTs) are marine biotoxins, primarily produced by dinoflagellates of the genera Gymnodinium spp., Alexandrium spp. They can accumulate in shellfish and, through the food chain, be assimilated by humans, giving rise to Paralytic Shellfish Poisoning. The maximum permitted level for PSTs in bivalves is 800 μg STX·2HCl eqv/kg (Reg. EC N° 853/2004). Until recently, the reference analytical method was the Mouse Bioassay, but Reg. EU N° 1709/2021 entered into force on 13 October 2021 and identified in the Standard EN14526:2017 or in any other internationally recognized validated method not entailing the use of live animals as official methods. Then the official control laboratories had urgently to fulfill the new requests, face out the Mouse Bioassay and implement instrumental analytical methods. The “EURLMB SOP for the analysis of PSTs by pre-column HPLC-FLD according to OMA AOAC 2005.06” also introduced a simplified semiquantitative approach to discriminate samples above and below the regulatory limit. The aim of the present paper is to present a new presence/absence test with a cut-off at 600 μg STX·2HCl eqv/kg enabling the fast discrimination of samples with very low PSTs levels from those to be submitted to the full quantitative confirmatory EN14526:2017 method. The method was implemented, avoiding the use of a large number of certified reference standards and long quantification procedures, resulting in an efficient, economical screening instrument available for official control laboratories. The protocol was fully validated, obtaining good performances in terms of repeatability (<11%) and recovery (53–106%) and accredited according to ISO/IEC 17025. The method was applied to mollusks collected from March 2021 to February 2022 along the Marche region in the frame of marine toxins official control

    New Trends in the Occurrence of Yessotoxins in the Northwestern Adriatic Sea

    Get PDF
    Yessotoxins (YTXs) are polycyclic toxic ether compounds produced by phytoplanktonic dinoflagellates which accumulate in filter-feeding organisms. We know that the water temperature in our areas Northwestern Adriatic Sea is optimal for the growth of potentially toxic algae (around 20 °C). In recent years, these temperatures have remained at these levels for longer and longer periods, probably due to global warming, which has led to an excessive increase in toxin levels. The interruption of mussel harvesting caused by algae negatively affects farmers’ revenues and the availability of local fish, causing a major economic loss in Italy’s main shellfish sector. Methods: In the nine years considered, 3359 samples were examined: 1715 marine waters, 73 common clams; 732 mussels; 66 oysters; and 773 veracious clams. Bivalve molluscs were examined for the presence of marine biotoxins, including YTXs, while potentially toxic algae, including those producing YTXs, were searched for and counted in marine waters. The method adopted for the quantification of lipophilic toxins involves the use of an LC-MS/MS system. The enumeration of phytoplankton cells was performed according to the Utermhöl method. Results: Between 2012 and 2020, 706 molluscs were tested for YTXs. In total, 246 samples tested positive, i.e., 34.84%. Of the positive samples, 30 exceeded the legal limit. Conclusion: In this regard, it is essential to develop and activate, as soon as possible, an “early warning” system that allows a better control of the production areas of live bivalve molluscs, thus allowing an optimal management of the plants in these critical situations

    A Year of Bio-Monitoring (2021): Presence of Algae of the Genus <i>Alexandrium</i>, <i>Dinophysis</i>, <i>Prorocentrum</i> and Non-Compliance for Paralytic Toxins and Lipophilic Toxins in Bivalve Mollusks Bred in Sardinia (W Mediterranean Sea)

    No full text
    Bivalve mollusk production represents the principal aquaculture activity in Sardinia (40°03′ N, 9°05′ E). In 2021, 859 water samples and 1270 mollusk samples were analyzed. The species Alexandrium minutum caused the accumulation of Paralytic Shellfish Toxins (PST) in three samples of bivalve mollusks. Dinophysis acuminata complex caused the accumulation of lipophilic toxins (LTs) belonging to the okadaic acid group (OAs) in 18 samples of bivalve mollusks. The research of paralytic shellfish toxins (PSTs) in shellfish samples has been carried out with LC-FLD, as mentioned in the AOAC 2005 Official Method 2005.06. The determination of LTs was carried out by LC-MS/MS analysis. DTX2, belonging to the group of OA toxins, was detected for the first time in Sardinia, in mussels sampled in Tortolì. The presence of Dinophysis and Prorocentrum species was correlated with the accumulation of the OA toxin group in bivalve mollusks, showing a certain repeatability at certain times of the year in the areas included in the study. The results of the present study can help to plan and organize more effective bio-monitoring sampling strategies

    Interlaboratory evaluation of multiple LC-MS/MS methods and a commercial ELISA method for determination of tetrodotoxin in oysters and mussels

    Get PDF
    Background Given the recent detection of TTX in bivalve molluscs but the absence of a full collaborative validation study for TTX determination in a large number of shellfish samples, interlaboratory assessment of method performance was required to better understand current capabilities for accurate and reproducible TTX quantitation using chemical and immunoassay methods. Objective The aim was to conduct a collaborative study with multiple laboratories, using results to assess method performance and acceptability of different TTX testing methods Methods Homogenous and stable mussel and oyster materials were assessed by participants using a range of published and in-house detection methods to determine mean TTX concentrations. Data was used to calculate recoveries, repeatability and reproducibility, together with participant acceptability z-scores. Results Method performance characteristics were good, showing excellent sensitivity, recovery and repeatability. Acceptable reproducibility was evidenced by HorRat values for all LC-MS/MS and ELISA methods being less than the 2.0 limit of acceptability. Method differences between the LC-MS/MS participants did not result in statistically-different results. Method performance characteristics compared well with previously-published single-laboratory validated methods and no statistical difference was found in results returned by ELISA in comparison with LC-MS/MS. Conclusions The results from this study demonstrate that current LC-MS/MS methods and the ELISA are on the whole capable of sensitive, accurate and reproducible TTX quantitation in shellfish. Further work is recommended to expand the number of laboratories testing ELISA and to standardise an LC-MS/MS protocol to further improve interlaboratory precision. Highlights Multiple mass spectrometric methods and a commercial ELISA have been successfully assessed through collaborative study, demonstrating excellent performance
    corecore