1,357 research outputs found

    Graduate HRD Programs in South Korea

    Get PDF
    The Problem To address national issues associated with societal development, many countries are recognizing the need to educate individuals who will lead developmental initiatives. While many previous studies have been conducted to examine how and what content of human resource development (HRD) has been taught in Western countries, similar research efforts have been rarely conducted in Asian countries such as South Korea. The lack of comparative study creates a research gap in understanding how HRD programs have been designed and implemented in different countries.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Z boson pair production at LHC in a stabilized Randall-Sundrum scenario

    Get PDF
    We study the Z boson pair production at LHC in the Randall-Sundrum scenario with the Goldberger-Wise stabilization mechanism. It is shown that comprehensive account of the Kaluza-Klein graviton and radion effects is crucial to probe the model: The KK graviton effects enhance the cross section of gg→ZZg g \to Z Z on the whole so that the resonance peak of the radion becomes easy to detect, whereas the RS effects on the qqˉ→ZZq\bar{q} \to Z Z process are rather insignificant. The pTp_T and invariant-mass distributions are presented to study the dependence of the RS model parameters. The production of longitudinally polarized Z bosons, to which the SM contributions are suppressed, is mainly due to KK gravitons and the radion, providing one of the most robust methods to signal the RS effects. The 1σ1 \sigma sensitivity bounds on (Λπ,mϕ)(\Lambda_\pi, m_\phi) with k/MPl=0.1k/M_{\rm Pl} =0.1 are also obtained such that the effective weak scale Λπ\Lambda_\pi of order 5 TeV can be experimentally probed.Comment: 28 pages, LaTex file, 18 eps figure

    Hybrid stars with the color dielectric and the MIT bag models

    Full text link
    We study the hadron-quark phase transition in the interior of neutron stars (NS). For the hadronic sector, we use a microscopic equation of state (EOS) involving nucleons and hyperons derived within the Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and three-body forces. For the description of quark matter, we employ both the MIT bag model with a density dependent bag constant, and the color dielectric model. We calculate the structure of NS interiors with the EOS comprising both phases, and we find that the NS maximum masses are never larger than 1.7 solar masses, no matter the model chosen for describing the pure quark phase.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    Corrosion behaviour of Mg–Zn–Y–Mischmetal alloys in phosphate buffer saline solution

    Full text link
    The influence of the processing route and chemical composition in the corrosion behaviour of two Mg-Zn-Y-Mischmetal alloys has been evaluated in phosphate buffer saline solution. The corrosion resistance of the alloy processed by conventional techniques was substantially higher than that found for the same alloy processed from atomised powders. Fine homogeneous distribution of the second-phase particles promoted severe attack due to the enhanced number of galvanic microcells. A higher concentration of zinc and a lower content of rare earth additions improved the corrosion resistance of the alloys due to the lower volume fraction of second-phase particles. © 2012 Elsevier Ltd.Peer Reviewe

    A Novel Liquid Multi-Phytonutrient Supplement Demonstrates DNA-Protective Effects

    Get PDF
    This study explored the DNA protective (anti-mutagenic) effects of an oral, liquid, multi-phytonutrient dietary supplement containing a proprietary blend of fruits, vegetables and aloe vera concentrated components in addition to a proprietary catechin complex from green tea (VIBE Cardiac & Life, Eniva Nutraceuticals, Anoka, MN; herein described as “VIBE”). This study tested the hypothesis that VIBE would reduce DNA damage in skin cells exposed to UVR. Human epidermal cells, from the cell line A431NS, were treated with 0% (control), 0.125%, 0.5%, 1% and 2% VIBE, and then exposed to 240 J/m2 UVR. The amount of DNA damage was assessed using the COMET assay. At each concentration tested, a significantly smaller amount of DNA damage was measured by the COMET assay for the VIBE treated cells compared to the control cells exposed to UVR without VIBE. The dose response curves showed a maximal response at 0.5% VIBE with a threefold reduction in COMET tail density compared to the control samples without VIBE (p < 0.001). Additional research is warranted in human clinical trials to further explore the results of this study which demonstrated the DNA protective and anti-mutagenic effects of VIBE for human skin cells exposed to UVR-induced DNA damage

    A case of necrotizing pancreatitis subsequent to transcatheter arterial chemoembolization in a patient with hepatocellular carcinoma

    Get PDF
    Necrotizing pancreatitis is one of the rare complications of transcatheter arterial chemoembolization (TACE). Necrotizing pancreatitis after TACE may result from the development of ischemia caused by regurgitation of embolic materials into the vessels supplying the pancreas. We report a case of post-TACE necrotizing pancreatitis with abscess formation in a patient with hepatocellular carcinoma. The patient had suffered hepatic artery injury due to repetitive TACE; during his 25th TACE procedure he had submitted to selective catheterization of the feeding vessel from the dorsal pancreatic artery with a cytotoxic agent and Gelfoam particles. The patient complained of abdominal pain after the TACE procedure, and a CT scan led to a diagnosis of necrotizing pancreatitis with abscess formation. The pancreatic abscess progressed despite general management of the pancreatitis, including antibiotics. Percutaneous catheter drainage was performed, and the symptoms of the patient improved

    Therapeutic potential of CKD-506, a novel selective histone deacetylase 6 inhibitor, in a murine model of rheumatoid arthritis

    Get PDF
    Abstract Objectives Histone deacetylase (HDAC) 6 promotes inflammation. We investigated the anti-arthritic effects of CKD-506, a novel HDAC6 inhibitor, in vitro and in a murine model of arthritis as a novel treatment option for rheumatoid arthritis (RA). Methods HDAC6 was overexpressed in mouse peritoneal macrophages and RAW 264.7 cells, and the effects of a HDAC6 inhibitor CKD-506 on cytokine production and activity of NF-ÎșB and AP-1 signaling were examined. Peripheral blood mononuclear cells (PBMCs) from RA patients and fibroblast-like synoviocytes (FLS) were activated in the presence of CKD-506. Next, regulatory T cells (Tregs) were induced from RA patients and co-cultured with healthy effector T cells (Teffs) and cell proliferation was analyzed by flow cytometry. Finally, the effects of the inhibitor on the severity of arthritis were assessed in a murine model of adjuvant-induced arthritis (AIA). Results Overexpression of HDAC6 induced macrophages to produce TNF-α and IL-6. The inhibitory effect of CKD-506 was mediated via blockade of NF-ÎșB and AP-1 activation. HDAC6 inhibition reduced TNF-α and IL-6 production by activated RA PBMCs. CKD-506 inhibited production of MMP-1, MMP-3, IL-6, and IL-8 by activated FLS. In addition, CKD-506 inhibited proliferation of Teffs directly and indirectly by improving iTreg function. In AIA rats, oral CKD-506 improved clinical arthritis in a dose-dependent manner. A combination of sub-therapeutic CKD-506 and methotrexate exerted a synergistic effect. Conclusion The novel HDAC6 inhibitor CKD-506 suppresses inflammatoryresponses by monocytes/macrophages, improves Treg function, and ameliorates arthritis severity in a murine model of RA. Thus, CKD-506 might be a novel and effective treatment option for RA

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
    • 

    corecore