121 research outputs found

    Sustainability Benefits Analysis of CyberManufacturing Systems

    Get PDF
    Confronted with growing sustainability awareness, mounting environmental pressure, meeting modern customers’ demand and the need to develop stronger market competitiveness, the manufacturing industry is striving to address sustainability-related issues in manufacturing. A new manufacturing system called CyberManufacturing System (CMS) has a great potential in addressing sustainability issues by handling manufacturing tasks differently and better than traditional manufacturing systems. CMS is an advanced manufacturing system where physical components are fully integrated and seamlessly networked with computational processes. The recent developments in Internet of Things, Cloud Computing, Fog Computing, Service-Oriented Technologies, etc., all contribute to the development of CMS. Under the context of this new manufacturing paradigm, every manufacturing resource or capability is digitized, registered and shared with all the networked users and stakeholders directly or through the Internet. CMS infrastructure enables intelligent behaviors of manufacturing components and systems such as self-monitoring, self-awareness, self-prediction, self-optimization, self-configuration, self-scalability, self-remediating and self-reusing. Sustainability benefits of CMS are generally mentioned in the existing researches. However, the existing sustainability studies of CMS focus a narrow scope of CMS (e.g., standalone machines and specific industrial domains) or partial aspects of sustainability analysis (e.g., solely from energy consumption or material consumption perspectives), and thus no research has comprehensively addressed the sustainability analysis of CMS. The proposed research intends to address these gaps by developing a comprehensive definition, architecture, functionality study of CMS for sustainability benefits analysis. A sustainability assessment framework based on Distance-to-Target methodology is developed to comprehensively and objectively evaluate manufacturing systems’ sustainability performance. Three practical cases are captured as examples for instantiating all CMS functions and analyzing the advancements of CMS in addressing concrete sustainability issues. As a result, CMS has proven to deliver substantial sustainability benefits in terms of (i) the increment of productivity, production quality, profitability & facility utilization and (ii) the reduction in Working-In-Process (WIP) inventory level & material consumption compared with the alternative traditional manufacturing system paradigms

    Effects of temperature on photosynthetic performance and nitrate reductase activity in vivo assay in Gracilariopsis lemaneiformis (Rhodophyta)

    Get PDF
    Gracilariopsis lemaneiformis is an economically-valued species and widely cultured in China at present. After being acclimated to different growth temperatures (15, 20, 25, and 30 degrees C) for 7 days, the relative growth rate (RGR), nitrate reductase activity, soluble protein content and chlorophyll a fluorescence of G. lemaneiformis were examined. Results show that RGR was markedly affected by temperature especially at 20 degrees C at which G. lemaneiformis exhibited the highest effective quantum yield of PSII [Y(II)] and light-saturated electron transport rate (ETRmax), but the lowest non-photochemical quenching. Irrespective of growth temperature, the nitrate reductase activity increased with the incubation temperature from 15 to 30 degrees C. In addition, the greatest nitrate reductase activity was found in the thalli grown at 20 degrees C. The value of temperature coefficient Q10 of alga cultured in 15 degrees C was the greatest among those of other temperatures tested. Results indicate that the optimum temperature for nitrate reductase synthesis was relatively lower than that for nitrate reductase activity, and the relationship among growth, photosynthesis, and nitrate reductase activity showed that the optimum temperature for activity of nitrate reductase in vivo assay should be the same to the optimal growth temperature

    Detecting Attacks in CyberManufacturing Systems: Additive Manufacturing Example

    Full text link
    CyberManufacturing System is a vision for future manufacturing where physical components are fully integrated with computational processes in a connected environment. However, realizing the vision requires that its security be adequately ensured. This paper presents a vision-based system to detect intentional attacks on additive manufacturing processes, utilizing machine learning techniques. Particularly, additive manufacturing systems have unique vulnerabilities to malicious attacks, which can result in defective infills but without affecting the exterior. In order to detect such infill defects, the research uses simulated 3D printing process images as well as actual 3D printing process images to compare accuracies of machine learning algorithms in classifying, clustering and detecting anomalies on different types of infills. Three algorithms - (i) random forest, (ii) k nearest neighbor, and (iii) anomaly detection - have been adopted in the research and shown to be effective in detecting such defects

    Affinity purification of recombinant human plasminogen activator from transgenic rabbit milk using a novel polyolresponsive monoclonal antibody

    Get PDF
    Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk.Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen because of its similarity to rhPA in terms of structure. The PR-mAb was prepared by hybridoma technology and screened by ELISA-elution assay. Screening antibody was performed using rhPA milk in an ELISA-elution assay. The antibody clone C4-PR-mAb was selected for immunoaffinity chromatography. The rhPA was effectively bound to immobilized C4-PR-mAb on the column and was eluted with Tris buffer comprising 0.75 mol/L ammonium sulfate and 40n% propanediol (pH7.9). The rhPA was further purified by passing through Chromdex75 gel filtration column.Results: There were 12 hybridoma strains selected into the polyol responsive mAbs screen step and three hybridoma strains were superior for producing PR-mAbs (C1, C4, C8). The rhPA can be purified from transgenic rabbit milk and maintained a higher thrombolytic activity in vitro by FAPA.Conclusion: The results demonstrate the suitability of the alternative approach used in this study. Using immunoaffinity chromatography and  gel filtration column is feasible and convenient for extracting rhPA from milk, and should be useful for purifying other tPA mutants or other novel recombinant milkderived proteins.Keywords: tPA, Immunoaffinity chromatography, PR-mAb, ELISA-elution, Antibody, Thrombolytic activit

    Digital twin brain: a bridge between biological intelligence and artificial intelligence

    Full text link
    In recent years, advances in neuroscience and artificial intelligence have paved the way for unprecedented opportunities for understanding the complexity of the brain and its emulation by computational systems. Cutting-edge advancements in neuroscience research have revealed the intricate relationship between brain structure and function, while the success of artificial neural networks highlights the importance of network architecture. Now is the time to bring them together to better unravel how intelligence emerges from the brain's multiscale repositories. In this review, we propose the Digital Twin Brain (DTB) as a transformative platform that bridges the gap between biological and artificial intelligence. It consists of three core elements: the brain structure that is fundamental to the twinning process, bottom-layer models to generate brain functions, and its wide spectrum of applications. Crucially, brain atlases provide a vital constraint, preserving the brain's network organization within the DTB. Furthermore, we highlight open questions that invite joint efforts from interdisciplinary fields and emphasize the far-reaching implications of the DTB. The DTB can offer unprecedented insights into the emergence of intelligence and neurological disorders, which holds tremendous promise for advancing our understanding of both biological and artificial intelligence, and ultimately propelling the development of artificial general intelligence and facilitating precision mental healthcare

    Plant-Morphing Strategies and Plant-Inspired Soft Actuators Fabricated by Biomimetic Four-Dimensional Printing: A Review

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-01-10, accepted 2021-03-09, epub 2021-05-04Publication status: PublishedFor prey, seeding, and protection, plants exhibit ingenious adaptive motions that respond autonomously to environmental stimuli by varying cellular organization, anisotropic orientation of cellulose fibers, mechanical instability design, etc. Notably, plants do not leverage muscle and nerves to produce and regulate their motions. In contrast, they harvest energy from the ambient environment and compute through embodied intelligence. These characteristics make them ideal candidates for application in self-morphing devices. Four-dimensional (4D) printing is a bottom-up additive manufacturing method that builds objects with the ability to change shape/properties in a predetermined manner. A versatile motion design catalog is required to predict the morphing processes and final states of the printed parts. This review summarizes the morphing and actuation mechanisms of plants and concludes with the recent development of 4D-printed smart materials inspired by the locomotion and structures of plant systems. We provide analyses of the challenges and our visions of biomimetic 4D printing, hoping to boost its application in soft robotics, smart medical devices, smart parts in aerospace, etc

    Physical simulation and numerical simulation of flash butt welding for innovative dual phase steel DP590: a comparative study

    Get PDF
    In this study, the microstructure and performance of newly designed dual-phase steel (DP590) after joining by flash butt welding (FBW) for vehicle wheel rims was analysed and compared by two simulations, i.e., physical simulation and numerical simulation, due to the high acceptance of these two methodologies. Physical simulation is regarded as a thermal–mechanical solution conducted by the Gleeble 3500 simulator and which can distribute the heat-affected zone (HAZ) of the obtained weld joint into four typical HAZs. These are coarse-grained HAZ, fine-grained HAZ, inter-critical HAZ and sub-critical HAZ. A combination of ferrite and tempered martensite leads to the softening behaviour at the sub-critical HAZ of DP590, which is verified to be the weakest area, and influences the final performance due to ~9% reduction of hardness and tensile strength. The numerical simulation, relying on finite element method (FEM) analysis, can distinguish the temperature distribution, which helps us to understand the relationship between the temperature distribution and real microstructure/performance. Based on this study, the combination of physical and numerical simulations can be used to optimise the flash butt welding parameters (flash and butt processes) from the points of temperature distribution (varied areas), microstructure and performance, which are guidelines for the investigation of flash butt welding for innovative materials

    Responses of soil microbial communities to a short-term application of seaweed fertilizer revealed by deep amplicon sequencing

    Get PDF
    Numerous studies have reported soil damage from chemical fertilizer application and an obvious promotional effect of seaweed fertilizer fermented with Sargassum horneri on the growth of tomato roots and seedlings due to its alginate oligosaccharide. However, few studies have assessed the effects of the fermented seaweed fertilizer on ecological environment and microorganisms in soil. Herein, our objective is to uncover microbial and soil environmental responses to Sargassum horneri-fermented seaweed fertilizer. After treated tomato-planting plots with Sargassum horneri fermented seaweed fertilizer, soil bacterial community compositions based on 16S rRNA gene amplicon sequencing, enzyme activities in soil and crop yield were analyzed. The bacterial a-diversity was strongly influenced by seaweed fertilizer amendment after 60 days. Non-metric multidimensional scaling (NMDS) analysis showed that a difference in bacterial community compositions between day 0 and day 60 was obvious for soil treated with seaweed fertilizer. The community variation could be caused by invertase activity and dehydrogenase activity in canonical correlation analysis (CCA). Protease activity, polyphenol oxidase activity and urease activity showed an obvious correlation with community variation in the Mantel test. The fertilization increased tomato yield by 1.48-1.83 times, Vc content by 1.24-4.55 times and lycopene content by 1.20-2.33 times. In the present study, a possible reason for bacterial community variation was discovered, which will provide an economical dilution rate of seaweed fertilizer for optimal crop yield and quality. Meanwhile, our study will be beneficial for developing a possible substitute for chemical fertilizer and an improved understanding of soil microbial functions and soil sustainability

    Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    Get PDF
    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures
    • …
    corecore