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  Abstract           Gracilariopsis   lemaneiformis  is an economically-valued species and widely cultured in China 
at present. After being acclimated to diff erent growth temperatures (15, 20, 25, and 30°C) for 7 days, the 
relative growth rate (RGR), nitrate reductase activity, soluble protein content and   chlorophyll  a  fl uorescence 
of  G .  lemaneiformis  were examined. Results show that RGR was markedly aff ected by temperature especially 
at 20°C at which  G .  lemaneiformis  exhibited the highest eff ective quantum yield of PSII [Y(II)] and light-
saturated electron transport rate (ETR max ), but the lowest non-photochemical quenching. Irrespective of 
growth temperature, the nitrate reductase activity increased with the incubation temperature from 15 to 
30°C. In addition, the greatest nitrate reductase activity was found in the thalli grown at 20°C. The value 
of temperature coeffi  cient Q10   of alga cultured in 15°C was the greatest among those of other temperatures 
tested. Results indicate that the optimum temperature for nitrate reductase synthesis was relatively lower 
than that for nitrate reductase activity, and the relationship among growth, photosynthesis, and nitrate 
reductase activity showed that the optimum temperature for activity of nitrate reductase in vivo assay should 
be the same to the optimal growth temperature. 
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 1 INTRODUCTION 

 Nitrate assimilation starts when alga takes up 
nitrate from the external medium. Nitrate reductase 
(EC 1.6.6.1) reduces nitrate to nitrite by using 
NAD(P)H as the electron donor (Dovis et al., 2014). 
Nitrite is then transported into the chloroplast, and 
subsequently reduced to ammonium, in which nitrite 
reductase (NiR) uses reduced ferredoxin as an electron 
donor (Chow et al., 2007; González-Galisteo et al., 
2019). The overall rate of nitrate assimilation is often 
limited by the fi rst reduction step of nitrate reductase 
activity. This step serves as a key point in nitrogen 
metabolism (Crawford and Arst, 1993; Campbell, 
1999), and can be used as an index to nitrate 
assimilation in the fi eld (Collos and Slawyk, 1977).  

 Nitrate reductase activity and photosynthesis are 
regulated by various environmental factors, including 
temperature, light, nitrate, iron, and other regulators of 

algal growth (Eppley et al., 1970; Lapointe et al., 
1984; Gao et al., 1992; Young et al., 2007; Chen et al., 
2018). Among them, temperature is a key physiological 
factor on the algal growth, distribution, and 
reproduction by aff ecting the sensitivity of the main 
cellular components (proteins and membranes). The 
temperature responses of species involve mainly three 
types: genetic adaptation (in thousands of millions of 
years), phenotypic acclimation (in hours to days), and 
short-term physiological regulation (in seconds to 
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minutes). Besides, temperature is also considered to 
function by regulating C and N assimilation strongly 
associated with the photosynthesis and enzyme 
activities (Berry and Bjorkman, 1980; Gao et al., 2017, 
2018). Furthermore, previous studies have pointed out 
that the metabolism of photosynthetic products is 
closely associated with nitrate reduction in 
photosynthetic tissues (Gao et al., 1992). The reason is 
that nitrite reduction needs reducing power and energy 
provided by photosynthesis (Chow et al., 2013; Varela 
et al., 2018). However, there are few studies about the 
regulation of temperature on photosynthesis and 
nitrate reductase activity by phenotypic acclimation. 

 In vitro and in vivo assays of nitrate reductase 
activity are two methods to measure nitrate reductase 
activity. The in vitro assay fi rst ruptures the cells, then 
extracts and stabilizes enzyme, and at last tests the 
enzyme (Dovis et al., 2014). The in vivo assay to 
increase the membrane permeability, increase the rate 
of substrate (NO 3 ̄  ), NADH (nicotinamide adenine 
dinucleotide (NAD) + hydrogen (H)), and reaction 
production (NO 2 ̄  ) in and out of the cells. The in vivo 
assay is faster and easier, and the more important is 
that it represents nitrate reductase activity with the 
current level of cellular NADH (Chow et al., 2004; 
Dovis et al., 2014). Previous studies have mainly 
concentrated on the in vitro assay (Chow et al., 2001, 
2004; Vona et al., 2004), but in vivo assay is scarcely 
discussed (Corzo and Niell, 1991). Only few papers 
concerned the optimum temperature for the nitrate 
reductase activity assay in vivo (Corzo and Niell, 
1991; Zou, 2005; Teichberg et al., 2007; Cabello-
Pasini et al., 2011; Chen et al., 2015), most of those 
studies reported that the incubation temperature for 
the in vivo assay should be 30°C or room temperature, 
regardless of the species and the actual physiology of 
the alga in the fi eld. When nitrate reductase is used as 
an index of the nitrate assimilation, the optimum 
temperature for the in vivo assay and the relationship 
between photosynthesis and nitrate reductase activity 
are important for evaluating C and N assimilation 
(Kristiansen, 1983).  

  Gracilariopsis   lemaneiformis  (Rhodophyta) is an 
economic macroalgae cultured in a large-scale in 
China for providing quality raw material for agar 
industry and feed for abalone aquaculture (Yu and 
Yang, 2008; Gu et al., 2017; Chen et al., 2018; Liu et 
al., 2019). By absorbing and utilizing nutrients from 
the seawater,  G .  lemaneiformis  acts as ideal biofi lters 
to control eutrophication, and improve the health and 
stability of the marine ecosystem (Yang et al., 2005). 

As a result, much attention has been paid to the 
aquaculture techniques and the ecophysiology of this 
alga (Yang et al., 2006). However, little research 
focused on the eff ects of temperature on nitrate 
reductase activity and photosynthesis in 
 G .   lemaneiformis . In this study, the relationship 
among photosynthesis, growth, content of soluble 
protein, and nitrate reductase activity assay in vivo 
were explored and the optimum temperature for in 
vivo assay of nitrate reductase activity was determined.  

 2 MATERIAL AND METHOD 

 2.1 Plant material 

  Gracilariopsis   lemaneiformis  was sampled from 
Shen’ao Bay (23.46°N, 117.09°E), Nan’ao Island, 
Shantou, China. Samples were kept at 5°C, and 
transported to the laboratory in 4 h. The algae were 
then stored in a glass aquarium tank containing 
fi ltered natural seawater (salinity: 28, temperature: 
20°C) under irradiance of 120 μmol photons/(m 2 ·s), 
and in 12 h L꞉12 h D photoperiod scheme for 3 days. 
Healthy thalli were selected for subsequent 
experiments. 

 2.2 Experimental design 

 Thalli of approximately 4 g fresh weight were 
placed in fl asks containing 1-L sterile natural seawater 
(salinity: 28; NO 3 ̄: 17.22 μmol/L; NO 2 ̄: 1.62 μmol/L; 
NH 4 +: 1.92 μmol/L; PO     43ˉ      : 0.29 μmol/L) enriched with 
100 μmol/L NaNO 3  and 10 μmol/L NaH 2 PO 4 . The 
irradiance was 120 μmol photons/(m 2 ·s) and 12 h 
L꞉12 h D photoperiod scheme. Triplicate cultures 
were grown at four diff erent temperatures (15, 20, 25, 
and 30°C), and culture medium was renewed every 
day. Algae remained in culture for 7 days prior to 
experimental work. 

 2.3 Relative growth rate (RGR) 

 The fresh weight of the alga was measured once a 
day. The relative growth rate (RGR) was calculated as 
follows: RGR=ln( W  t / W  0 )/ t , where  W  0  is the initial fresh 
weight and  W  t  is the fi nal fresh weight after  t  days. 
Before weighting the algae, samples were softly blotted 
using fi lter paper to remove excess water. 

 2.4 Determination of nitrate reductase activity 

 The nitrate reductase activity assay method was 
modifi ed according to the in vivo method described 
by Corzo and Niell (1991). At the end of the culturing 
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period (7 days), when illuminated for 4 h (Lopes et 
al., 1997),  G .  lemaneiformis  samples were cut into 
3-cm-long segments by scissors, then incubated in 
culture seawater for 1 h to minimize the cutting 
damage (Zou, 2005). Approximately 0.2 g of healthy 
algae were selected at random (Chen et al., 2015), and 
then put into test tubes containing 5 mL of the reactive 
medium (pre-cooled at 15, 20, 25, and 30°C, 
individually). The reactive medium was made using 
0.1 mol/L pH 7.9 phosphate buff er, 1 mmol/L EDTA, 
0.1% 1-propanol, 300 μmol/L NaNO 3  and 10 μmol/L 
glucose. Subsequently, the medium was infused with 
N 2  gas for approximately 2 min to remove oxygen to 
prevent nitrite from being oxidized to nitrate, medium 
was then sealed and wrapped using aluminium foil 
before a 2-h incubation at 15, 20, 25, and 30°C. After 
the incubation, the reaction was completed by 
removing the thalli from the reactive medium. 
Approximately 1 mL of the resulting medium was 
then added to a mixture of 1 mL of 1%w/v 
sulphanilamide and 1 mL of 0.2% w/v n-(1-napthyl) 
ethylenediamine dihydrochloride. The absorbance of 
the medium was then determined at 543 nm. Nitrite 
concentration in the medium was calculated using a 
standard curve. The nitrate reductase activity was 
expressed in μmol/(NO 2 ·h·g FW). 

 The temperature coeffi  cient Q10 was used to 
analyze the relationship between temperature and 
nitrate reductase activity (Rasmusson et al., 2019), 
and values of Q10 were calculated across temperature 
intervals (15–30°C) as: Q10=( V  2 / V  1 ) 10/(  T  2  –  T  1) , where  V  1  
and  V  2  are nitrate reductase activity at diff erent 
temperatures,  T  1  and  T  2  (in °C). 

 2.5 Soluble protein determination 

 Soluble protein was extracted by grinding 0.1 g 
(fresh weight) thalli in 0.1 mol/L phosphate buff er 
(pH=7.0) in a mortar on ice. Cell debris was removed 
by centrifuging for 15 min at 5 000 r/min in 4°C, and 
the samples were then assayed according to the 
modifi ed method of the binding of Coomassie 
Brilliant Blue G-250 (Bradford, 1976; Read and 
Northcote, 1981). Approximately 0.1 mL of extract 
was obtained into the 5 mL of mixture (Coomassie 
Brilliant Blue G-250) and the absorbance was 
determined at 595 nm. 

 The mixture: 100 mg of Coomassie Brilliant Blue 
G-250 was dissolved in 50 mL of 95% ethanol, and 
then added with 100 mL of 85% (w/v) phosphoric 
acid. The solution was diluted to a fi nal volume of 1 L 
using distilled water. 

 2.6 Chlorophyll  a  fl uorescence parameters  

 Chlorophyll  a  fl uorescence parameters were 
determined using a pulse amplitude modulated 
fl uorescence monitoring system (Maxi-Imagine-
PAM, Heinz Walz, Eff eltrich, Germany). Samples 
were placed in dark at diff erent incubation 
temperatures (15, 20, 25, and 30°C) for 10 min before 
beginning the measurements. The eff ective quantum 
yield of PSII [Y(II)] is Y(II)=( F  m ′– F  0 )/ F    m ′ (Genty et 
al., 1989), and the non-photochemical quenching 
(NPQ) is NPQ=( F  m – F    m ′)/ F     m ′, where  F  m    is the maximal 
fl uorescence induced by a saturation pulse from a 
dark adapted sample,  F  0  is the minimal fl uorescence 
level measured at measuring light the low frequency, 
and  F  m ′ is the maximal fl uorescence level induced by 
a saturation pulse from algae in active light (111 μmol 
photons/(m 2 ·s)). 

 The rapid light curves (RLCs) can be obtained by a 
series of 20 s light exposures with increasing irradiance 
(1, 21, 56, 111, 186, 281, 336, 396, 461, 531, and 
611 μmol photons/(m 2 ·s)). The parameters of the 
RLCs were calculated following the photoinhibiton 
(Eilers and Peeters, 1988) models as follows:  

 ETR= I /( aI  2 + bI + c ),            (1) 
  I  k =( c / a ) 1/2 ,            (2) 
  α =1/ c ,                  (3)  
 ETR max =1/[ b +2( ac ) 1/2 ],            (4) 

 where ETR is electron transport rate, ETR max  is the 
light-saturated electron transport rate,  α  is the electron 
transport effi  ciency,  I  is the incident irradiance,  I  k  is 
saturated irradiance, and  a ,  b , and  c  are the adjustment 
parameters. 

 2.7 Data analysis 

 ETR was turned into a C-fi xation rate according to 
Silva and Santos (2004), and the nitrate reductase 
activity was changed to N-incorporation rate 
according to Collos and Slawyk (1977).  

 Signifi cance among treatments was tested using 
the one-way analysis of variance (one-way ANOVA) 
in SPSS (Version 19). The signifi cant level was set at 
0.05. All data were expressed as the mean ± standard 
deviation (SD,  n =3). 

 3 RESULT 

 3.1 Growth 

  Gracilariopsis   lemaneiformis  was cultured for 
7 days at 15, 20, 25, and 30°C, separately. The 
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maximum RGR (4.36%/d) ( P <0.05) occurred at 
20°C. The RGR decreased when the temperature was 
higher than 20°C ( P <0.05) (25°C: 3.43%/d; 30°C: 
3.05%/d; Fig.1). The appropriate temperature for 
algal growth was between 15 and 25°C, with the 
optimum temperature being 20°C.  

 3.2 nitrate reductase activity and soluble protein 
contents 

 The nitrate reductase activity was determined at 
diff erent incubation temperatures (15, 20, 25, and 
30°C) and the instantaneous responses of nitrate 
reductase activity to temperature were detected. 

Figure 2 illustrates the variation of nitrate reductase 
activity as a function of temperature. Irrespective of 
growth temperature, the maximum nitrate reductase 
activity of algae occurred at 30°C. Maximum nitrate 
reductase activity occurred at 15°C, and decreased 
with increasing of temperature (Fig.2). After 
comparing nitrate reductase activity determined at the 
growth temperature, we found that maximum nitrate 
reductase activity occurred at 20°C (Table 1), which 
is in accordance with the results of algal growth (the 
maximum RGR occurred at 20°C).  

 For the nitrate reductase activity measurements, 
the Q10 values diff ered substantially with the growth 
temperature. The Q10 value at 15°C was highest 
among all the growth temperatures. No signifi cant 
( P >0.05) was found over the range from 20 to 30°C 
(Table 1). 

 Increasing temperatures led to lower soluble protein 
contents, indicating that lower temperature promoted 
the accumulation of soluble protein (Table 1).  

 3.3 Changes in PSII photosynthetic capabilities 

 After  G .  lemaneiformis  had acclimated to diff erent 
growth temperatures for 7 days, chlorophyll 
fl uorescence parameters were determined by Maxi-
imagine PAM. Figure 3 shows the changes of the two 
photosynthetic properties of PSII, eff ective quantum 
yield of PSII [Y(II)] and NPQ. The highest Y(II) 
(about 0.36) was found at 20°C, which was 
signifi cantly greater than that at other temperatures 
( P <0.05) (15°C: 0.28; 25°C: 0.28; 30°C: 0.24) 
(Fig.3a). Contrary to the tendency of changes about 
Y(II) to temperature, the lowest NPQ occurred at 
20°C. Higher NPQ was found at 25 and 30°C, which 
was almost twice the value at 20°C (Fig.3b). 

 3.4 Rapid light curve (RLC) of  G .    lemaneiformis  

 The rapid light curve shows signifi cantly diff erent 
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 Fig.2 The nitrate reductase activity of  G .    lemaneiformis  
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 Table 1 Nitrate reductase activity, Q10, and soluble protein 
contents of  G.     lemaneiformis  growing at 15, 20, 25, 
and 30°C  

 Temperature 
(°C) 

 Nitrate reductase activity 
(μmol/(NO 2 ·h·g FW))  Q10  Soluble protein 

contents (mg/g FW) 

15  0.036±0.008 b   2.45±0.74 a  33.55±2.41a

20 0.045±0.007a 1.60±0.54b 31.68±0.80 b 

25 0.030±0.006 c 1.49±0.39b 30.6±2.74b

 30        0.028±0.005 c             1.33±0.44 b             30.24±1.96 b  

 The value represents mean±SD ( n =3). Diff erent letters represent signifi cant 
diff erence between values. 
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responses of photosynthetic performance to 
temperature ( P <0.05) (Fig.4). At 20°C, the light-
saturated electron transport rate (ETR max ) reached its 
maximum value, which was signifi cantly greater 

( P <0.05) than other temperatures’. The increasing 
temperature led to a gradual decrease in ETR max  to a 
lower extent. When the growth temperature increased 
to 30°C, ETR max  decreased to about two fi fths of the 
value at 20°C ( P <0.05) (Table 2). However, 
irrespective of the growth temperature, the electron 
transport effi  ciency (α) showed no signifi cant 
diff erence ( P >0.05). The saturation light ( I  k ) of 
 G .  lemaneiformis  cultured at 15 and 20°C was almost 
equal, but was signifi cantly greater than that at 25°C 
(almost 1.7 times), and was even twice as much as the 
value at 30°C ( P <0.05). 

 The correlation between nitrate reductase activity 
and electron transport rate (ETR) illustrates the 
relationship between nitrate assimilation, 
photosynthetic character and physiological status. 
The convincing correlation observed indicated a 
strong relationship between nitrate assimilation and 
photosynthesis ( R  2 =0.861 16,  P <0.05; Fig.5a). As 
shown in Fig.5b, the maximal ratio of C-fi xation rate 
and N-incorporation rate occurred at 25°C. At higher 
temperature (30°C) the ratio tended to decrease. 

 4 DISCUSSION 

 Although the growth of  G .  lemaneiformis  remained 
positive under diff erent temperatures, and clear eff ects 
of temperature on the growth were observed (Fig.1). 
We found the maximum RGR occurred at 20°C with 
4.36%/d, Zou and Gao (2009) found  G .  lemaneiformis  
at 20±1°C with RGR 6%/d, which was 37.6% more, 
but Xu and Gao (2009) found that RGR (2.4%/d) is 
less 80%. Diff erent results may be due to the diff erent 
cultural conditions. 

  Gracilariopsis   lemaneiformis  exhibited identical 
thermal responses for the nitrate reductase activity 
in the present study. To investigate the optimum 
temperature for the nitrate reductase activity of 
 G .  lemaneiformis  in vivo assay, four diff erent 
incubation temperatures (15, 20, 25, and 30°C) were 
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 Table 2 Rapid light curve (RLC) of  G .    le  maneiformis  
growing at 15, 20, 25, and 30°C separately 

 Temperature (°C)  ETR max    α    I  k  

15 30.9±0.01a  0.151±0.009 a   393.9±15.1 a  

20     35.9±0.68b  0.145±0.026 a  389.4±3 3.4a

25 19.2±2.39 c  0.152±0.015 a  246.5±12.6b

 30        15.1±0.08 d   0.154±0.021 a            195.2±14.4 c  

 ETR max : maximum electron transport rate; α: light using effi  ciency;  I  k : 
saturation light (μmol photons/(m 2 ·s)). The value represents mean±SD 
( n =3). Diff erent letters represent signifi cant diff erence between values. 
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determined, with the incubation temperature optima 
for the nitrate reductase activity assay in vivo should 
be the growth temperature in the present study. At 
20°C, the maximum nitrate reductase activity was 
0.045 μmol/(NO 2 ·h·g FW), which is 31% less than 
that Xu and Gao (2012) found. NH 4 +   concentration in 
our natural fi ltrated seawater was 1.92 μmol/L, 
which might inhibit nitrate reductase activity partly 
(Chow and De Oliveira, 2008). The natural fi ltrated 
seawater we enriched with 100 μmol/L NaNO 3 . 
Nitrate is one of the most important factors regulating 
nitrate reductase activity (Chow and De Oliveira, 
2008). Addition of nitrate can induce high nitrate 
reductase activity and reduce the toxic eff ect on the 
algae. On the optimum incubation temperature 
selected for the nitrate reductase activity assay in 
vivo, previous studies suggested that the nitrate 
reductase activity shall be determined at the optimum 
incubation temperature, which should be close to the 
maximum activity (Kristiansen, 1983; Corzo and 
Niell, 1991; Gao et al., 2000; Chow et al., 2004). 
Regardless of species and growth temperature. 

 G .  lemaneiformis  cultured at diff erent temperatures 
had its maximum nitrate reductase activity at 30°C 
(incubation temperature), 15°C-cultured alga had 
0.135 μmol/(NO 2 ·h·g FW) similar to the nitrate 
reductase activity of  Ulva   rigida  (Corzo and Niell, 
1991) and  Hizikia   fusiforme  (Zou, 2005) when 
assayed in vivo at 30°C, but lower than  Gracilaria  
 chilensis  assayed in vitro, which represents a 
theoretical maximum for in vivo activity of the 
enzyme (Chow and De Oliveira, 2008). According 
to previous studies, 30°C should be the optimum 
incubation temperature for the nitrate reductase 
activity assay, as shown in the Fig.2. However, the 
actual optimum temperature for algal growth was 
20°C (Fig.1), the same as the temperature for the 
maximum nitrate reductase activity of thalli 
determined at its growth temperature (Table 1). The 
optimum temperature for the maximum nitrate 
reductase activity did not accord with the optimum 
temperature for the algal growth. For  Thalassiosira  
 nordenskioeldii  and  Heterocapsa   triquetra , the 
optimum temperature for nitrate reductase activity 
corresponded well with the optimum temperature 
for the growth (Jitts et al., 1964). Considering the 
importance of algal physiological status, we believe 
that the optimum temperature for the nitrate 
reductase activity in vivo assay is 20°C.  

 To determine the optimum temperature for nitrate 
reductase activity in vivo assay, we studied the 
relationship between the photosynthesis and nitrate 
reductase activity. The assimilation of nitrate and the 
synthesis of enzymes, such as nitrate reductase are 
linked fundamentally with photosynthesis in alga 
(Thomas et al., 1976). After long-term acclimation 
(7 days), the physiological performances of alga were 
changed. Thalli usually have a series of mechanisms 
to respond the changes caused by environmental 
factors variation. For example, plants can optimize 
photosynthesis irradiance at diff erent temperatures 
(Staehr and Wernberg, 2009) and increase carbon 
concentration mechanism expression when light 
intensity increases (Raven et al., 2011). Photosynthesis 
often displays an optimal temperature, which 
corresponds to the median of the non-harmful range, 
and decreases when the temperature increases above 
the thermal optimum (Sage and Kubien, 2007). At 15 
and 20°C, the cultured algae had better photosynthetic 
performance than those cultured at 25 and 30°C 
(Fig.4). This tendency of change about ETR max  was 
the same as the nitrate reductase activity measured at 
its growth temperature. To promote the growth of 
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alga, suffi  cient carbohydrate and protein are required. 
As a result, nitrate assimilation and carbon metabolism 
are tightly correlated (Turpin and Weger, 1988; 
Vanlerberghe et al., 1990; Turpin, 1991). This close 
connection arises from the reducing power and 
carbon-skeleton requirements of the synthesis of 
amino acids from ammonium produced during nitrate 
assimilation. Consequently, if either of them is 
aff ected, the other will also be aff ected. Meanwhile, 
the occurrence of maximal activities of both processes 
should be synchronized because it is crucial in 
decreasing nitrite toxicity, given that nitrite 
assimilation reduces nitrite to ammonium and requires 
reduced ferredoxin. Therefore, tight regulation 
between nitrate assimilation and photosynthesis has 
been found in many macroalgae (Chow et al., 2004; 
Gao et al., 2016; Xu et al., 2017), as showed in Fig.5. 

 Temperature is one of the most important factors 
controlling plant distribution and productivity 
(Davison, 1991; Sage and Kubien, 2007). When algae 
adapted to diff erent temperatures for a long term 
(7 days), its photosynthetic performance showed 
signifi cantly diff erent characteristics (Figs.3 & 4). 
Low temperature can impair the synthesis and 
function of photosynthetic pigment-protein complexes 
and down-regulate the activities of key enzymes in 
the Calvin cycle to infl uence the photosynthesis, 
while the fl uidity of membranes can be enhanced in 
high temperature, leading to a disintegration of the 
lipid bilayer ultimately (Nie et al., 1995; Los and 
Murata, 2004). Temperature at 20°C was the optimum 
temperature for algal photosynthesis, at which algae 
had the maximum ETR max  and Y(II), but the lowest 
NPQ, indicating that plants cultured at 20°C could 
provide more energy for carboxylation operation, 
stimulated organic material synthesis for faster 
growth. At the same time, the maximum nitrate 
reductase activity occurred also at 20°C when 
determined at its growth temperature, so nitrate 
assimilation could obtain enough needed material and 
power to insert the nitrogen into the carbon skeleton 
without producing more toxic nitrite to damage alga 
(Chow et al., 2004). When the growth temperature 
decreased to 15°C, algal photosynthesis remained 
relatively unchanged (Fig.4), but the nitrate reductase 
activity was much lowered when determined at its 
growth temperature (Table 1), showing lower nitrate 
assimilation. As a consequence, the growth of alga 
was relatively lower (Fig.1). According to the results 
in Table 1, the lower temperature promoted high 
soluble protein contents, and at 15°C cultured alga 

had the maximum nitrate reductase activity measured 
at diff erent incubation temperatures and Q10 (15, 20, 
25, and 30°C; Table 1). This may be attributed to the 
fact that the contents of nitrate reductase was higher 
at 15°C. However, when the growth temperature 
increased to 25 and 30°C, both algal photosynthesis 
and nitrate reductase activity were strongly inhibited. 
Compared with that of algae cultured at 15 and 20°C, 
high-temperature cultured algae had lower 
photosynthetic performance and nitrate reductase 
activity but higher NPQ levels, demonstrating that at 
25 and 30°C damage had already occurred in the 
thalli. At the end of the culturing period at 30°C, a 
part of the alga had begun to decompose (data not 
shown), indicating that  G .  lemaneiformis  cannot 
tolerate high temperature beyond 25°C. Besides, C꞉N 
fi xation rate ratio varied with temperature, and the 
optimum temperature was found at 25°C. It began to 
decrease at 30°C, which might be due to the inhibited 
photosynthesis.  

 5 CONCLUSION 

 In conclusion, the photosynthetic performance and 
nitrate reductase activity of  G .  lemaneiformis  were 
signifi cantly aff ected by temperature, and the optimum 
temperature for nitrate reductase activity in vivo assay 
was the same as growth temperature. Additionally, 
low temperature (15℃) was in favour of accumulation 
of nitrate reductase, but higher temperature (30℃) 
could enhance the activity of nitrate reductase. Low 
temperature (15℃) cultured  G .  lemaneiformis  meets 
sudden high temperature (25 and 30℃) is benefi cial 
to N assimilation.  
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