27 research outputs found

    Image Captioning with Context-Aware Auxiliary Guidance

    Full text link
    Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the current prediction. Such methods can not effectively take advantage of the future predicted information to learn complete semantics. In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism that can guide the captioning model to perceive global contexts. Upon the captioning model, CAAG performs semantic attention that selectively concentrates on useful information of the global predictions to reproduce the current generation. To validate the adaptability of the method, we apply CAAG to three popular captioners and our proposal achieves competitive performance on the challenging Microsoft COCO image captioning benchmark, e.g. 132.2 CIDEr-D score on Karpathy split and 130.7 CIDEr-D (c40) score on official online evaluation server

    Acoustic Vortex in Waveguide with Chiral Gradient Sawtooth Metasurface

    Full text link
    The acoustic vortex states with spiral phase dislocation that can carry orbital angular moment (OAM) have aroused many research interests in recent years. The mainstream methods of generating acoustic vortex are based on Huygens-Fresnel principle to modulate the wavefront to create spatial spiral phase dislocation. In this work, we propose an entirely new scenario to generate acoustic vortex in a waveguide with chiral gradient sawtooth metasurface. The physical mechanism of our method is to lift the degenerate dipole eigenmodes through the scattering effect of the chiral surface structure, and then the superposition of them will generate both and order vortices in place. Compared to the existing methods of acoustic vortex production, our design has many merits, such as easy to manufacture and control, the working frequency is broadband, sign of vortex order can be readily flipped. Both the full-wave simulations and experimental measurements validate the existence of the acoustic vortices. The torque effect of the acoustic vortices is also successfully performed by rotating a foam disk as a practical application. Our work opens up a new route for generating acoustic vortex and could have potential significances in microfluidics, acoustic tweezers and ultrasonic communication, etc

    Optimised phase disposition pulse-width modulation strategy for hybrid-clamped multilevel inverters using switching state sequences

    Get PDF
    This study describes an optimised modulation strategy based on switching state sequences for the hybrid-clamped multilevel converter. Two key control variables defined as 'phase shift angle' and 'switching state change' for a five-level hybrid-clamped inverter are proposed to improve all switches' operation, and by changing their values, different control methods can be obtained for modulation optimisation purposes. Two example methods can solve the voltage imbalance problem of the dc-link capacitors and furthermore avoid two switches' simultaneous switching transitions and improve the inverter's performance as compared with the traditional phase disposition pulse-width modulation strategy. A 6 kW prototype inverter is developed and a range of simulation and experiments are carried out for validation. It is found that simulation and experimental results are in a good agreement and the proposed modulation strategy is verified in terms of low-order harmonic reduction

    Magnetic-field-induced electronic instability of Weyl-like fermions in compressed black phosphorus

    Full text link
    Revealing the role of Coulomb interaction in topological semimetals with Dirac/Weyl-like band dispersion shapes a new frontier in condensed matter physics. Topological node-line semimetals (TNLSMs), anticipated as a fertile ground for exploring electronic correlation effects due to the anisotropy associated with their node-line structure, have recently attracted considerable attention. In this study, we report an experimental observation for correlation effects in TNLSMs realized by black phosphorus (BP) under hydrostatic pressure. By performing a combination of nuclear magnetic resonance measurements and band calculations on compressed BP, a magnetic-field-induced electronic instability of Weyl-like fermions is identified under an external magnetic field parallel to the so-called nodal ring in the reciprocal space. Anomalous spin fluctuations serving as the fingerprint of electronic instability are observed at low temperatures, and they are observed to maximize at approximately 1.0 GPa. This study presents compressed BP as a realistic material platform for exploring the rich physics in strongly coupled Weyl-like fermions.Comment: 10 pages, 4 figure

    Design Safety Considerations for Water Cooled Small Modular Reactors Incorporating Lessons Learned from the Fukushima Daiichi Accident

    Get PDF
    The global future deployment of advanced nuclear reactors for electricity generation depends primarily on the ability of nuclear industries, utilities and regulatory authorities to further enhance their reliability and economic competitiveness while satisfying stringent safety requirements. The IAEA has a project to help coordinate Member State efforts in the development and deployment of small and medium sized or small modular reactor (SMR) technology. This project aims simultaneously to facilitate SMR technology developers and potential SMR users, particularly States embarking on a nuclear power programme, in identifying key enabling technologies and enhancing capacity building by resolving issues relevant to deployment, including nuclear reactor safety. The objective of this publication is to explore common practices for Member States, which will be an essential resource for future development and deployment of SMR technology. The accident at the Fukushima Daiichi nuclear power plant was caused by an unprecedented combination of natural events: a strong earthquake, beyond th e design basis, followed by a series of tsunamis of heights exceeding the design basis tsunami considered in the flood analysis for the site. Consequently, all the operating nuclear power plants and advanced reactors under development, including SMRs, have been incorporating lessons learned from the accident to assure and enhance the performance of the engineered safety features in coping with such external events. In response to the Fukushima Daiichi accident, the IAEA established an Action Plan on Nuclear Safety. The preparation of this publication was carried out within the framework of the IAEA Action Plan on effectively utilizing research and development. The main objective of this publication is to present technology developers and user s with common considerations, approaches and measures for enhancing the defence in depth and operability of water cooled SMR design concepts to cope with extreme natural hazards. Indicative requirements to prevent such an accident from recurring are also provided for States planning to adopt water cooled SMR designs and technologies. The IAEA gratefully acknowledges the information on technology and safety aspects provided by SMR design organizations and information regarding technical requirements provided by several Member States. The IAEA officers responsible for this publication were M.H. Subki of the Division of Nuclear Power and M. Kim of the Division of Nuclear Installation Safety

    Experimental study on the interrelation of multiple mechanical parameters in overburden rock caving process during coal mining in longwall panel

    No full text
    Abstract In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the significant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identified as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine

    DAN: Deep Attention Neural Network for News Recommendation

    No full text
    With the rapid information explosion of news, making personalized news recommendation for users becomes an increasingly challenging problem. Many existing recommendation methods that regard the recommendation procedure as the static process, have achieved better recommendation performance. However, they usually fail with the dynamic diversity of news and user’s interests, or ignore the importance of sequential information of user’s clicking selection. In this paper, taking full advantages of convolution neural network (CNN), recurrent neural network (RNN) and attention mechanism, we propose a deep attention neural network DAN for news recommendation. Our DAN model presents to use attention-based parallel CNN for aggregating user’s interest features and attention-based RNN for capturing richer hidden sequential features of user’s clicks, and combines these features for new recommendation. We conduct experiment on real-world news data sets, and the experimental results demonstrate the superiority and effectiveness of our proposed DAN model

    A relation-specific attention network for joint entity and relation extraction

    No full text

    Numerical Investigation of Relationship between Bursting Proneness and Mechanical Parameters of Coal

    No full text
    As one of the most catastrophic dynamic hazards in underground coal mines, coal bursts have been a major safety concern around the world for many years. Although the coal bursts can occur in all cases of hard to soft coal if the right stress environment is created, the occurrence of coal bursts is closely related to the intrinsic mechanical properties of coal, such as the bursting proneness. In this study, a total of 27 coal specimens are selected in the open literature studies to obtain a group of fundament data, such as the mechanical parameters, four bursting proneness indices, stress-strain curves, and their geological conditions where the specimens were taken. The relationship between bursting proneness indices and the cohesion of the coal specimens is established by numerically fitting the stress-strain curves and theoretically deduction. By taking into account the coal heterogeneity, eight probability distribution functions are employed to assignment nonuniform cohesion to the numerical model and to study the influence of heterogeneity on bursting proneness. The results reveal that the coal cohesion, which combines the common advantages of the four proneness indices, can be used as bursting proneness index. In the research of heterogeneity, the coal bursting proneness will decrease with the increasing of cohesion scatter degree. The larger the cohesion scatter degree increase is, the lower the bursting proneness will be. The failure of coal specimen is more and more severe with the decrease of cohesion scatter degree. In addition, this paper provides two methods for assigning heterogeneous parameters to the numerical model. The contours of shear strain rate and plastic state between homogeneous and heterogeneous coal specimens are compared to study the failure types of coal specimens and to reveal the mechanism of violent failure in coal bursts
    corecore