152 research outputs found

    Comparing human activity density and green space supply using the Baidu Heat Map in Zhengzhou, China

    Get PDF
    Rapidly growing cities often struggle with insufficient green space, although information on when and where more green space is needed can be difficult to collect. Big data on the density of individuals in cities collected from mobile phones can estimate the usage intensity of urban green space. Taking Zhengzhou\u27s central city as an example, we combine the real-time human movement data provided by the Baidu Heat Map, which indicates the density of mobile phones, with vector overlays of different kinds of green space. We used the geographically weighted regression (GWR) method to estimate differentials in green space usage between weekdays and weekends, utilizing the location and the density of the aggregation of people with powered-up mobile phones. Compared with weekends, the aggregation of people in urban green spaces on workdays tends to vary more in time and be more concentrated in space, while the highest usage is more stable on weekends. More importantly, the percentage of weekday green space utilization is higher in small parks and green strips in the city, with the density increasing in those small areas, while the green space at a greater distance to the city center is underutilized. This study validates the potential of applying Baidu Heat Map data to provide a dynamic perspective of green space use, and highlights the need for more green space in city centers

    SRMS as a Novel Therapeutic Target in Gastric Cancer Peritoneal Metastases

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1233/thumbnail.jp

    COX-2 induction by unconjugated bile acids involves reactive oxygen speciesmediated signalling pathways in Barrett's oesophagus and oesophageal adenocarcinoma

    Get PDF
    Objectives: Bile reflux contributes to oesophageal injury and neoplasia. COX-2 is involved in both inflammation and carcinogenesis; however, the precise mechanisms by which bile acids promote COX-2 expression in the oesophagus are largely unknown. We analysed the molecular mechanisms that govern bile acid-mediated expression of COX-2 in Barrett's oesophagus and oesophageal adenocarcinoma (OA). Design: The effects of bile acids on COX-2 expression were analysed in immortalised Barrett's oesophagus and OA cells using immunoblotting and transient transfections. Pharmacological inhibitors, phospho-specific antibodies, dominant-negative mutants and siRNA techniques were used to identify relevant signalling pathways. Flow cytometry and reactive oxygen species (ROS) scavengers were used to examine ROS involvement. Immunohistochemistry was performed on oesophageal mucosa obtained from an established rat model of bile reflux. Results: Unconjugated bile acids potently stimulated COX-2 expression and induced AKT and ERK1/2 phosphorylation in concert with COX-2 induction. These findings were mimicked in the in vivo rat model. Dominant-negative (DN) AKT and LY294002 (PI3K inhibitor) or U0126 (MEK-1/2 inhibitor) blocked chenodeoxycholic acid (CD) and deoxycholic acid (DC) mediated COX-2 induction. CD and DC also induced CREB phosphorylation and AP-1 activity. CREB-specific siRNA and DN AP-1 blocked CD and DC-induced COX-2 induction. Finally, CD and DC increased intracellular ROS, while ROS scavengers blocked COX-2 induction and the signalling pathways involved. Conclusions: Unconjugated bile acids induce CREB and AP-1-dependent COX-2 expression in Barrett's oesophagus and OA through ROS-mediated activation of PI3K/AKT and ERK1/2. This study enhances our understanding of the molecular mechanisms by which bile acids promote the development of oesophageal adenocarcinoma

    Type-A quasi-periodic oscillation in the black hole transient MAXI J1348-630

    Full text link
    We present a detailed analysis of the spectral and timing characteristics of a 7-Hz type-A quasi-periodic oscillation (QPO) detected in NICER observations of the black hole X-ray binary MAXI J1348-630 during its high-soft state. The QPO is broad and weak, with an integrated fractional rms amplitude of 0.9 per cent in the 0.5-10 keV band. Thanks to the large effective area of NICER, combined with the high flux of the source and a relatively long accumulative exposure time, we construct the first rms and phase-lag spectra for a type-A QPO. Our analysis reveals that the fractional rms amplitude of the QPO increases with energy from below 1 per cent at 1 keV to 3 per cent at 6 keV. The shape of the QPO spectrum is similar to that of the Comptonised component, suggesting that the Comptonised region is driving the variability. The phase lags at the QPO frequency are always soft taking the lowest energy as reference. By jointly fitting the time-averaged spectrum of the source and the rms and phase-lag spectra of the QPO with the time-dependent Comptonisation model vkompthdk, we find that the radiative properties of the type-A QPO can be explained by a vertically extended Comptonised region with a size of 2300 km.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Type-A quasi-periodic oscillation in the black hole transient MAXI J1348-630

    Get PDF
    We present a detailed analysis of the spectral and timing characteristics of a 7-Hz type-A quasi-periodic oscillation (QPO) detected in NICER observations of the black hole X-ray binary MAXI J1348-630 during its high-soft state. The QPO is broad and weak, with an integrated fractional rms amplitude of 0.9 per cent in the 0.5-10 keV band. Thanks to the large effective area of NICER, combined with the high flux of the source and a relatively long accumulative exposure time, we construct the first rms and phase-lag spectra for a type-A QPO. Our analysis reveals that the fractional rms amplitude of the QPO increases with energy from below 1 per cent at 1 keV to ∼3 per cent at 6 keV. The shape of the QPO spectrum is similar to that of the Comptonized component, suggesting that the Comptonized region is driving the variability. The phase lags at the QPO frequency are always soft taking the lowest energy as reference. By jointly fitting the time-averaged spectrum of the source and the rms and phase-lag spectra of the QPO with the time-dependent Comptonization model vkompthdk, we find that the radiative properties of the type-A QPO can be explained by a vertically extended Comptonized region with a size of ∼2300 km.</p

    High energy Millihertz quasi-periodic oscillations in 1A 0535+262 with Insight-HXMT challenge current models

    Get PDF
    We studied the millihertz quasi-periodic oscillation (mHz QPO) in the 2020 outburst of the Be/X-ray binary 1A 0535+262 using Insight-HXMT data over a broad energy band. The mHz QPO is detected in the 27-120 keV energy band. The QPO centroid frequency is correlated with the source flux, and evolves in the 35-95 mHz range during the outburst. The QPO is most significant in the 50-65 keV band, with a significance of ~ 8 sigma, but is hardly detectable (<2 sigma) in the lowest (1-27 keV) and highest (>120 keV) energy bands. Notably, the detection of mHz QPO above 80 keV is the highest energy at which mHz QPOs have been detected so far. The fractional rms of the mHz QPO first increases and then decreases with energy, reaching the maximum amplitude at 50-65 keV. In addition, at the peak of the outburst, the mHz QPO shows a double-peak structure, with the difference between the two peaks being constant at ~0.02 Hz, twice the spin frequency of the neutron star in this system. We discuss different scenarios explaining the generation of the mHz QPO, including the beat frequency model, the Keplerian frequency model, the model of two jets in opposite directions, and the precession of the neutron star, but find that none of them can explain the origin of the QPO well. We conclude that the variability of non-thermal radiation may account for the mHz QPO, but further theoretical studies are needed to reveal the physical mechanism.Comment: 13 pages, 7 figures. Accepted for publication in MNRA

    H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer

    Get PDF
    The clinical significance of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remains largely unexplored. Here, we analyzed a large panel of lncRNA candidates with The Cancer Genome Atlas (TCGA) CRC dataset, and identified H19 as the most significant lncRNA associated with CRC patient survival. We further validated such association in two independent CRC cohorts. H19 silencing blocked G1-S transition, reduced cell proliferation, and inhibited cell migration. We profiled gene expression changes to gain mechanism insight of H19 function. Transcriptome data analysis revealed not only previously identified mechanisms such as Let-7 regulation by H19, but also RB1-E2F1 function and β-catenin activity as essential upstream regulators mediating H19 function. Our experimental data showed that H19 affects phosphorylation of RB1 protein by regulating gene expression of CDK4 and CCND1. We further demonstrated that reduced CDK8 expression underlies changes of β-catenin activity, and identified that H19 interacts with macroH2A, an essential regulator of CDK8 gene transcription. However, the relevance of H19-macroH2A interaction in CDK8 regulation remains to be experimentally determined. We further explored the clinical relevance of above mechanisms in clinical samples, and showed that combined analysis of H19 with its targets improved prognostic value of H19 in CRC
    • …
    corecore