10,940 research outputs found

    Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells

    Get PDF
    Protein O-glycosylation has key roles in many biological processes, but the repertoire of O-glycans synthesized by cells is difficult to determine. Here we describe an approach termed Cellular O-Glycome Reporter/Amplification (CORA), a sensitive method used to amplify and profile mucin-type O-glycans synthesized by living cells. Cells convert added peracetylated benzyl-α-N-acetylgalactosamine to a large variety of modified O-glycan derivatives that are secreted from cells, allowing for easy purification for analysis by HPLC and mass spectrometry (MS). Relative to conventional O-glycan analyses, CORA resulted in an ∼100-1,000-fold increase in sensitivity and identified a more complex repertoire of O-glycans in more than a dozen cell types from Homo sapiens and Mus musculus. Furthermore, when coupled with computational modeling, CORA can be used for predictions about the diversity of the human O-glycome and offers new opportunities to identify novel glycan biomarkers for human diseases

    Facial Expression Restoration Based on Improved Graph Convolutional Networks

    Full text link
    Facial expression analysis in the wild is challenging when the facial image is with low resolution or partial occlusion. Considering the correlations among different facial local regions under different facial expressions, this paper proposes a novel facial expression restoration method based on generative adversarial network by integrating an improved graph convolutional network (IGCN) and region relation modeling block (RRMB). Unlike conventional graph convolutional networks taking vectors as input features, IGCN can use tensors of face patches as inputs. It is better to retain the structure information of face patches. The proposed RRMB is designed to address facial generative tasks including inpainting and super-resolution with facial action units detection, which aims to restore facial expression as the ground-truth. Extensive experiments conducted on BP4D and DISFA benchmarks demonstrate the effectiveness of our proposed method through quantitative and qualitative evaluations.Comment: Accepted by MMM202

    Microstructural damage of the posterior corpus callosum contributes to the clinical severity of neglect

    Get PDF
    One theory to account for neglect symptoms in patients with right focal damage invokes a release of inhibition of the right parietal cortex over the left parieto-frontal circuits, by disconnection mechanism. This theory is supported by transcranial magnetic stimulation studies showing the existence of asymmetric inhibitory interactions between the left and right posterior parietal cortex, with a right hemispheric advantage. These inhibitory mechanisms are mediated by direct transcallosal projections located in the posterior portions of the corpus callosum. The current study, using diffusion imaging and tract-based spatial statistics (TBSS), aims at assessing, in a data-driven fashion, the contribution of structural disconnection between hemispheres in determining the presence and severity of neglect. Eleven patients with right acute stroke and 11 healthy matched controls underwent MRI at 3T, including diffusion imaging, and T1-weighted volumes. TBSS was modified to account for the presence of the lesion and used to assess the presence and extension of changes in diffusion indices of microscopic white matter integrity in the left hemisphere of patients compared to controls, and to investigate, by correlation analysis, whether this damage might account for the presence and severity of patients' neglect, as assessed by the Behavioural Inattention Test (BIT). None of the patients had any macroscopic abnormality in the left hemisphere; however, 3 cases were discarded due to image artefacts in the MRI data. Conversely, TBSS analysis revealed widespread changes in diffusion indices in most of their left hemisphere tracts, with a predominant involvement of the corpus callosum and its projections on the parietal white matter. A region of association between patients' scores at BIT and brain FA values was found in the posterior part of the corpus callosum. This study strongly supports the hypothesis of a major role of structural disconnection between the right and left parietal cortex in determining 'neglect'

    Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APPLIED PHYSICS LETTERS. 90(9):093125 (2007) and may be found at https://doi.org/10.1063/1.2710778 .ArticleAPPLIED PHYSICS LETTERS. 90(9):093125 (2007)journal articl

    Scheme for generating entangled states of two field modes in a cavity

    Full text link
    This paper considers a two-level atom interacting with two cavity modes with equal frequencies. Applying a unitary transformation, the system reduces to the analytically solvable Jaynes-Cummings model. For some particular field states, coherent and squeezed states, the transformation between the two bare basis's, related by the unitary transformation, becomes particularly simple. It is shown how to generate, the highly non-classical, entangled coherent states of the two modes, both in the zero and large detuning cases. An advantage with the zero detuning case is that the preparation is deterministic and no atomic measurement is needed. For the large detuning situation a measurement is required, leaving the field in either of two orthogonal entangled coherent states.Comment: Accepted in J. Mod. Opt.; 12 pages; Replaced with revised version. Extended discussion of experimental realizations, earlier studies in the field and on the frequency dependence in the adiabatic eliminatio

    Sorghum cobalt analysis on not determined wave length with atomic absorption spectrophotometer on background correction mode

    Get PDF
    This study was to know the better wave length on measuring cobalt content in forage sorghum hybrid (Sorghum bicolor) with an atomic absorption spectrophotometer. The analysis was on background correction mode with three wave lengths; 240.8, 240.7 (determined wave length or recommended wave length) and 240.6 nm, respectively. The larger absorbance value on the 240.7 nm, apparently, it might be considered as a good wave length but the smaller background value was a more important factor for the analysis as was shown on 240.6 nm. Correlation coefficients between the values on 240.7 nm: 240.6 nm and between them (240.8 nm: 240.6 nm) were higher and this common 240.6 nm was considered the better wave length.Key words: Atomic absorption spectrophotometer; background correction mode, cobalt analysis, forage sorghum, not determined wave lengths

    Komagataeibacter Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria

    Get PDF
    Bacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the Komagataeibacter genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the Komagataeibacter tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids. Working in Komagataeibacter rhaeticus, we describe basic parts for this system, including promoters, fusion tags, and reporter proteins, before showcasing how the assembly system enables more complex designs. Specifically, we use KTK cloning to reformat the Escherichia coli curli amyloid fiber system for functional expression in K. rhaeticus, and go on to modify it as a system for programming protein secretion from the cellulose producing bacteria. With this toolkit, we aim to accelerate modular synthetic biology in these bacteria, and enable more rapid progress in the emerging ELMs community

    Secreted Endothelial Cell Factors Immobilized on Collagen Scaffolds Enhance the Recipient Endothelial Cell Environment

    Get PDF
    Strategies to design novel vascular scaffolds are a continuing aim in tissue engineering and often such designs encompass the use of recombinant factors to enhance the performance of the scaffold. The established use of cell secretion utilized in feeder systems and conditioned media offer a source of paracrine factors, which has potential to be used in tissue-engineered (TE) scaffolds. Here we utilize this principle from endothelial cells (ECs), to create a novel TE scaffold by harnessing secreted factors and immobilizing these to collagen scaffolds. This research revealed increased cellular attachment and positive angiogenic gene upregulation responses in recipient ECs grown on these conditioned scaffolds. Also, the conditioning method did not affect the mechanical structural integrity of the scaffolds. These results may advocate the potential use of this system to improve vascular scaffolds' in vivo performance. In addition, this process may be a future method utilized to improve other tissue engineering scaffold therapies

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure
    • …
    corecore