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ABSTRACT 

Strategies to design novel vascular scaffolds are a continuing aim in tissue engineering and 

often such designs encompass the use of recombinant factors in order to enhance the 

performance of the scaffold.  The established use of cell secretion utilised in feeder systems 

and conditioned media offer a source of paracrine factors which has potential to be used in 

tissue engineered (TE) scaffolds.  Here we utilise this principle from endothelial cells, to 

create a novel TE scaffold by harnessing secreted factors and immobilising these to collagen 

scaffolds. This research revealed increased cellular attachment and positive angiogenic gene 

upregulation responses in recipient endothelial cells grown on these conditioned scaffolds. 

Also the conditioning method did not affect the mechanical structural integrity of the 

scaffolds.  These results may advocate the potential use of this system to improve vascular 

scaffolds in vivo performance. Additionally this process may be a future method utilised to 

improve other tissue engineering scaffold therapies. 

 
Keywords:   Endothelial, secreted factors, paracrine, collagen scaffolds, autologous cells. 
Abbreviations: EC (endothelial cell), ECSF (endothelial cell secreted factor), BM (basal media), ABM (adjusted 
basal media), E/N (1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide and NHS-hydroxysulfosuccinimide).  NAVC 
(number of attached viable cells). 
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1.   INTRODUCTION 

A continuing challenge faced in vascular tissue engineering is how to improve treatments for 

cardiovascular disease and other such arterial conditions.  Current strategies include a 

number of scaffold materials and/or therapies that mimic the native vessel wall, restore in 

situ endothelialisation, promote extracellular matrix (ECM) production, inhibit 

thrombogenicity, reduce inflammation and help stimulate neovascularisation and 

angiogenesis.1,2 Tissue engineering has utilised a range of biomaterials including, 

decellularised ECM3,4, synthetic biopolymers5 and biodegradable polymers to create TE 

vascular grafts.6–10   

Some of the most common types of scaffold are collagen based11–13 and have been shown 

to promote cell attachment, migration, proliferation, differentiation and ECM production 

during remodelling and regeneration.14 More recently they have incorporated growth 

factors and proteins such as vascular endothelial growth factor (VEGF)15,16 and angiopoietin-

1 (Ang1).17,18 The use of growth factors and proteins has predominately focused on the 

concentration and release kinetics of these factors, whether they are designed to be 

retained within the scaffold,19,20 or released.21–23 Mainly there purpose is to enhance both 

the cell functionality, contact and to interact with the in vivo tissue.24  

Additionally, cell secretion can also be a direct or indirect source of paracrine growth factors 

and proteins. Consequently this may be one way to partially recapitulate the intrinsic cell 

environment by using the cell secretion. The principle offered from cell secretion has been 

utilised directly in the cell culture as cell feeder layer systems to provide paracrine factors to 

recipient cells.25 Cell feeder layers have been widely used to maintain pluripotency of 

human induced pluripotent stem cells (hIPSCs)26,27 and human embryonic stem cells 
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(hESCs).28,29 They have also shown promise in tissue regeneration30,31 including secretion 

from mesenchymal stem cells (MSCs)32–34 and endothelial progenitor cells (EPCs).35,36  

In this in vitro study we use these principles of the feeder layer cell secretion technique to 

generate cell conditioned media and incorporate this into a novel TE scaffold.  We achieve 

this by utilising endothelial cell-secreted factors (ECSFs) and immobilise these to collagen 

scaffolds and test for improved functionality by the attachment of recipient endothelial cells 

(ECs).  

 

2.   MATERIALS AND METHODS  

2.1. Preparation and Experimental Setup 

       2.1.1. Cell culture 

Human umbilical vein endothelial cells (HUVECs) from an infant male Caucasian donor were obtained 

cryopreserved (500,000 cells) at passage 1 (PromoCell GmbH) and cultured and expanded to passage 5 (P5) in 

a humidified atmosphere of 5% CO2/37°C in T-75 vented flasks (Corning®) and grown to 80% confluency.  

HUVECs were cultured according to a previously used endothelial cell culture protocol,37–39 in brief, MCDB 131 

medium (Life Technologies™) was supplemented with: 2% FBS (ThermoFisher Scientific); 1% L-Glutamine; 1% 

penicillin/streptomycin (Life Technologies™);  1 mg/L hydrocortisone; 50 mg/L of ascorbic acid (Sigma); 2 mg/L 

fibroblast growth factor (FGF); 10 mg/L epidermal growth factor (EGF); 2 mg/L insulin like growth factor (IGF); 

1 mg/L vascular endothelial growth factor (VEGF) (PeproTech).   

       2.1.1.1. Basal media 

Basal media (BM) consisted of MCDB 131 medium with 2% FBS omitted and all supplements (listed above) 

added for serum free cell culture conditions.  For experimental conditions, 5 ml of the BM was incubated in a 

humidified atmosphere of 5% CO2/37°C in T-75 vented flasks.  

       2.1.1.2. Cell conditioned basal media 

HUVECs at P5 were washed three times using D-PBS/CaCl2 and MgCl2 free (Sigma).  HUVECs were then 

cultured in 5 ml BM for 48 h and incubated in a humidified atmosphere of 5% CO2/37°C in T-75 vented flasks 
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and grown to no more than 70-75% confluency to obtain cell conditioned BM.  This media is generally known 

as cell conditioned media, for simplicity it is further referred to as adjusted basal media (ABM). The ABM was 

filter sterilised using 0.22 µM filter (Millex® GS Millipore) before use. 

       2.1.2. Collagen scaffolds 

Scaffolds discs (10 mm diameter x 2 mm thick) were punched from sheets of commercially available 

Ultrafoam™ collagen (Davol Inc.) using a 10 mm disposable biopsy punch (Acuderm Inc.) on to the surface of a 

sterile 1.2 mm thick glass slide (ThermoFisher Scientific).  According to the manufacturer’s specifications, 

Ultrafoam™ is a water-insoluble, partial HCl salt of purified bovine dermal (corium) collagen formed as a 

sponge with interconnected pores. Collagen scaffolds soaked in D-PBS/CaCl2 and MgCl2 free (Sigma) served as 

the control groups for all experiments. 

       2.1.2.1. Conditioned collagen scaffolds via absorption  

Scaffolds were soaked in either: PBS, BM or ABM and incubated 24 h at 37°C and mildly shaken in an orbital 

shaker (IKA KS 400 i) at 100 rpm in 100 ml Duran flasks during the conditioning process.  Refer to Figure 1. for 

schematic overview of scaffold preparation. 

       2.1.2.2. Conditioned collagen scaffolds via immobilisation  

Scaffolds were soaked for 40 min at room temperature with mild agitation in a D-PBS/CaCl2 and MgCl2 free 

(Sigma) solution of 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide - EDC (Sigma) and N-

hydroxysulfosuccinimide - sulfo-NHS (Sigma) (E/N) at a concentration ratio of 16mg/24 mg ml-1 respectively 

and filter sterilised using 0.22 µM filter.  The concentrations used had been used previously used 

concentrations for scaffolds.40  The scaffolds were then subjected to three successive soaks in fresh D-

PBS/CaCl2 and MgCl2 free (Sigma) for 10 min each at room temperature with mild agitation to remove any 

excess E/N.   Scaffolds were soaked in either PBS, BM or ABM and incubated 24 h at 37°C and mildly shaken at 

100 rpm in 100 ml Duran flasks during the conditioning process. 

       2.1.3. Cell seeding 

P5 cells were used throughout this study at a seeding density of 5 x 105 cells per scaffold in 100 µl media with n 

= 4 for each condition.  For cell seeding, cells were washed three times using D-PBS/CaCl2 and MgCl2 free 

(Sigma) and media changed into BM  for 24 h and incubated in a humidified atmosphere of 5% CO2/37°C in T-



5 
 

75 vented flasks.  Cells were seeded on to the collagen scaffolds in serum-free basal media within 12-well non-

adherent culture plates (Greiner) and incubated for 1 h at 5% CO2/37°C. Un-seeded scaffolds in each 

respective group served as the control. Serum-free basal media (1 ml) was then added to cover scaffolds and 

incubated 24 h and 48 h at 5% CO2/37°C. 

     2.2. Experimental Quantification  

      2.2.1. Protein quantitation  

Media samples were then taken from the 6 condition groups after 24h of incubation with scaffolds and prior to 

cell seeding.  Samples (n = 4 scaffolds) were analysed in quadruplicate using a Protein Quantitation Kit 

(BioVision®) according to manufacturer’s protocol and the absorbance was measured in clear assay microplates 

(Greiner®) using a 595 nm filter in a Modulus™ II microplate multimode reader. 

     2.2.2. Mechanical testing of collagen scaffolds 

Compressional mechanics of collagen scaffolds were accessed to determine the mechanical integrity post-

modification due to cross-linking, soaking and shaking conditions.  The compression testing and data 

interpolation are based on previously used methods for tissue engineered scaffolds.41,42 Scaffolds n = 3 were 

measured in unconfined uniaxial compression testing using an Instron Model 5540 testing machine equipped 

with a 50-N load cell. The collagen scaffolds were compressed to 60% strain at a strain rate of 0.06mm/s. 

Incremental Young's modulus (i.e. the ratio of stress to strain) was calculated by measuring the slope of the 

stress-strain plot at incremental strain increases: (0-10%, 10-20%, 20-30%, 30-40%, 40-50% and 50-60%) as 

previously described.43  

     2.2.3. Scanning Electron Microscopy (SEM) of collagen scaffolds 

SEM characterised the porous architecture of the collagen scaffolds post-modification due to cross-linking 

and/or soaking, then shaking conditions. The scaffolds tested, PBS unshaken, PBS shaken, PBE E/N unshaken 

and PBS E/N shaken.  Scaffolds were snap-frozen then freeze dried using a FreeZone® 4.5 freeze-drier 

(Labconco®). The samples were then mounted on to metal stubs with double-sided carbon tape. Thin layers of 

a gold and palladium alloy were applied to each sample with an automated sputter coater (Polaron 
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SputterCoater). The samples were then examined at x 60 low magnification at 5kV (Hitach S-4700 SEM) as 

previously shown.15 

    2.2.4. CellTiter-Blue® Cell viability assay 

The assay was performed according to the manufacturer’s instructions (Promega). For the 6 condition groups, 

n = 4 scaffolds in duplicate readings to give SD of each group.  A range of cell densities were also plated (5x104; 

10x104; 25 x104; 5x105 7.5x105 and 1 x106 cells/ ml-1) and counted to give a proportional ratio of cell number: 

fluorescence emitted within this standard curve.  Samples were analysed in a Modulus™ II microplate 

multimode reader using filter of 525 nm Ex/580-640nm Em. 

    2.2.5. Live/Dead® Viability/Cytotoxicity assay 

This assay was performed according to the manufacturer’s protocol (Molecular Probes™ Life Technologies) for 

fluorescence microscopy on the seeded scaffolds.  The working concentration of the calcein AM and EthD-1 

dyes were diluted to 0.2 µM and 0.4 µM respectively from the suggested working concentrations of 2 µM and 

4 µM, respectively.  Scaffolds were washed 3 times to remove excess dye in D-PBS /CaCl2 and MgCl2 free 

(Sigma) and placed on a well slide with 25mm coverslip (Scientific Laboratory Solutions). Microscopy was 

performed using a Zeiss Axio Imager fluorescent microscope using a 40x objective. 

    2.2.6. DNA quantitation  

Cell seeded scaffolds after the 24 and 48h growth periods were snap-frozen and stored at -20°C.  Scaffolds 

were then freeze-dried overnight using a FreeZone® 4.5 freeze-drier (Labconco®) to remove any residual water 

content before DNA extraction.  The scaffolds were then digested in a solution of D-PBS/ CaCl2 and MgCl2 free 

(Sigma), containing 2.5 U/ml papain extract (Sigma) 5 mM cysteine-HCl (Sigma) and 5 mM EDTA (Sigma) and 

samples were incubated overnight at 60°C. Cell extracts (n =4) of 5 x 105 cells frozen at -20°C when scaffolds 

were seeded, served as the control. Samples (n =4 scaffolds) were mixed thoroughly before assay.  A Quant-

IT™ Picogreen® dsDNA assay kit (Life Technologies™) was used and performed according to the manufacturer’s 

protocol based on 200 µl volume for microplate reader analysis.  Samples were analysed in a Modulus™ II 

microplate multimode reader using filter of 490 nm Ex/510-570nm Em. 

    2.2.7. RNA isolation 
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Cell seeded scaffolds after the 24 and 48h growth periods were snap-frozen in 350µl Trizol® (Sigma) and stored 

at -80°C until preparation.  Upon thawing, the scaffolds were homogenised using a TissueRuptor™ device 

(Qiagen) and centrifuged at 12000 rpm to obtain an aqueous layer and this was subjected to a chloroform 

extraction and 70% ethanol precipitation.  The RNA was then prepared using an RNeasy® kit (Qiagen) according 

to the manufacturer’s protocol. The RNA (100ng/µl) was used to prepare cDNA using ImProm-II™ Reverse 

Transcription System (Promega) according to the manufacturer’s Instructions. 

    2.2.8. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) 

The qRT-PCR was performed in triplicate using three independent cDNA samples with additional respective RT- 

samples to investigate gene expression after seeding on scaffolds.  Sensifast™ SYBR® High-ROX (Bioline) was 

used in the reaction and the reaction was performed using a lightcycler® 480 Instrument II (Roche Life Science) 

for standard program of 45 cycles.  Relative quantification of the RT-PCR results was carried out using the 2^-

ΔΔct method.44,37  Forward and reverse primer sequences (Sigma) were as follows: Glyceraldehyde 3-phosphate 

dehydrogenase  (GAPDH) forward primer ′5-GTCTCCTCTGACTTCAACAG-3′, reverse primer, ′5-

GTTGTCATACCAGGAAATGAG-3′; vascular endothelial growth factor A (VEGFA) forward primer ′5-

AGACCAAAGAAAGATAGAGCAAGACAAG-3′, reverse primer ′5-GGCAGCGTGGTTTCTGTATCG-3′; matrix 

metalloproteinase 1 (MMP1) forward primer ′5-AGCTAGCTCAGGATGACATTGATG-3′ reverse primer 5′-

GCCGATGGGCTGGACAG-3′; von Willebrand factor (vWF) forward primer 5′-GCAGTGGAGAACAGTGGTG-3′, 

reverse primer 5′-GTGGCAGCGGGCAAAC-3′; Angiopoietin-1 (Ang1) forward primer 5′-

ATTCTGAATGGTGGGGAGCA-3′, reverse primer 5′- TGTGCTGGGATGGGAAAGAT-3′;  platelet/endothelial cell 

adhesion molecule (PECAM/CD31) forward primer  5′- ATTGCAGTGGTTATCATCGGAGTG-3′, reverse primer 5′-

CTCGTTGTTGGAGTTCAGAAGTGG-3′;  Tissue inhibitor of matrix metalloproteinase-2 (TIMP2) forward primer 5′-

AATGCAGATGTAGTGATCAGG-3′, reverse primer 5′-TCTATATCCTTCTCAGGCCC-3′.  

2.3 . Statistical analysis 

Data are presented as average ± standard error mean. Statistical significance was determined by performing 

one-way ANOVA with n = 4 for protein quantitation assay, CellTiter-Blue® cell viability assay and the DNA 

quantitation assay.  For qRT-PCR n = 3 and for compression testing n = 3. All data presented with significance 

accepted p-value < 0.05. 
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3. RESULTS 

3.1 Evaluation of scaffold properties  

3.1.1. Retainment of ECSFs 

The level of protein released into or extracted from different conditioning fluids was 

investigated.  The protein concentration in the conditioning fluids were measured after 

agitation with the scaffolds to show the influence in processing methods. The protein 

released into the PBS group had an average concentration of 0.32 µg/µl (as the collagen 

scaffold itself is a source of protein), while in the BM group this was higher at 0.35 µg/µl, 

due to the additional components present within the media.  Additionally the ABM group 

had the largest concentration at 0.4 µg/µl, with the presence of ECSFs in the media. In the 

functionalised groups, which showed significant difference between PBS E/N (0.3 µg/µl) and 

BM E/N (0.31 µg/µl), these displayed 25 % and 22.5 % less protein compared to ABM group, 

respectively.  The surface functionalisation step demonstrated that the ECSFs were retained 

in the scaffolds, as shown by the reduction of free protein constituents found in the media 

(conditioning fluid) observed for these groups, with the ABM E/N group (0.35 µg/µl) having 

12.5% less in the conditioning fluid compared to the (non-functionalised) ABM scaffolds, 

with a similar trend being shown in the other respective groups (Figure 2.).  

3.1.2 . Scaffold integrity 

In these experiments we assessed the effect of post-modification of the scaffolds, due to 

soaking and/or E/N surface functionalisation within agitation conditions and to determine if 

the mechanical integrity was modified.  The compression properties of the collagen 

scaffolds were tested, as was the corresponding surface topography analysed by SEM. Large 

differences in Young’s modulus were seen at low strain intervals (10-20%) with a maximum 

of 50% difference observed between PBS shaken (0.4 kPa) and unshaken (0.20 kPa).  At high 
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strain interval of 50-60% the compression difference between PBS shaken (3.08 kPa) and 

PBS unshaken (2.78 kPa) was reduced to 9.7% difference.  No statistical significant 

differences were shown between the groups throughout the intervals of the Young’s 

modulus (Table 1.).  The surface topography between the scaffold groups showed no vast 

difference in the macroporous or microporous structure of the collagen (Figure 3.) with pour 

sizes varying between 50-200 µm approximately across the surface. 

 

3.2 Assessment of scaffold functionality  

3.2.1. EC Attachment and viability 

The ability of cells to attach to the scaffolds was assessed and also their viability once 

attached to the scaffolds (Figure 4A).  The number of attached viable cells (NAVC) after 24 h 

displayed a significant progressive increase across the six scaffold conditions with ABM 

scaffolds (30 x 103 cells attached) compared to 33% and 10% less attached cells in BM and 

PBS scaffolds, respectively.  The E/N treated scaffolds showed greater NAVC than untreated 

scaffolds across all groups.  The NAVC was most profound with ABM E/N scaffolds (35 x 103 

cells attached) compared to 71% less attached cells in PBS scaffolds (10 x 103 cells attached). 

However at 48 h there was an increase in the NAVC, which was significantly greater in all 

these scaffold groups, with the ABM E/N scaffolds (110 x 103 cells attached) compared to 

45% less cells attached in PBS E/N scaffolds.  Comparing the difference between 24 h and 48 

h values of NAVC within the six conditions, the level increased exponentially.  The amount of 

DNA retained on the scaffolds from cell attachment showed the same trend across the 

scaffold groups at 24 h. This was then further increased within these scaffold groups at 48 h, 

with ABM E/N showing the greatest concentration of DNA retained on the scaffold at 1500 

ng/ml (Figure 4B).  However the difference in DNA concentration between the groups at 24 
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h and 48 h is not exponential unlike the NAVC (described above). Visual microscopy using 

Live/Dead® Viability/Cytotoxicity assay showed NAVC on the scaffolds with the greatest 

amount on the ABM E/N scaffolds (Figure 5). 

3.2.2 . Gene expression of ECs on scaffolds 

The analysis of gene expression accessed the functionality of the recipient ECs (seeded) and 

determined if the scaffold preparation method effected the EC response in terms of 

expression of key angiogenic and regulatory genes (Figure 6. and Figure 7.).  The results 

indicate a progressive increase in notably VEGFA and Ang1, across all scaffold groups, with 

ABM scaffolds showing the greatest increase of gene expression, further enhanced by E/N 

surface functionalisation. This ABM E/N group showed this greatest level of expression 

compared to the lowest level with PBS scaffolds and this was significantly 6-fold and 3-fold 

higher in VEGFA and Ang1 respectively at 24 h.  These levels increased 6.5-fold higher and 

3.5 fold higher at 48 h.    The key functional gene CD31 was also increased in all groups, with 

the greatest level in the ABM E/N scaffolds. For the same comparison with PBS scaffolds the 

levels were 3-fold higher at 24 h and significantly 2.5 fold higher at 48 h.  The vWF 

expression showed marginal differences when compared across groups, with the largest 

increase (2-fold higher) in PBS scaffolds between the 24 h and 48 h time point.   MMP1 was 

significantly 2-fold lower in the E/N functionalised scaffolds at 24 h and 48 h when 

compared to untreated scaffolds.  Conversely the expression of TIMP2, showed a significant 

increase (2-fold) in the E/N scaffolds at 24 h to 48 h.   

 

 

4.  DISCUSSION 
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The majority of recent studies have used the incorporation of recombinant factors to 

enhance the preformance of TE scaffolds for specific treatments.  This can often be complex 

with varying success, especially when multi-factors are employed.45  An alternative 

approach to produce the growth factors or proteins is by the use of cell secreted factors.  

This has been previously achieved by one of two methods: by the use of cell feeder layers; 

or obtaining conditioned media. One successful strategy used MSC-derived conditioned 

medium that promoted proliferation of cardiac progenitor cells (CPC), inhibited apoptosis 

induced by hypoxia and serum starvation and furthermore upregulated expression of a 

cardiomyocyte-related gene.46   This strategy of paracrine cell secretion has been utilised in 

many regenerative medical applications, namely with the use of stem cells, whereby the 

paracrine secretion from these cells elicits a response in recruitment of host cells to the 

tissue environment.47,48    

In this study we generated a conditioned media in a bovine-free serum containing the 

endogenous ECSFs and attached this to the scaffold using a number of techniques.  This 

process demonstrated an increase in the level of protein present initially by conditioning 

scaffolds using BM but more so by using a cell conditioned media (ABM) scaffold.  By using a 

surface cross-linking reaction, we were able to retain and further enhance the conditioned 

scaffolds and show a greater significant effect in viable cell attachment when these scaffolds 

have the presence of ECSFs.  Nevertheless, the cross-linking reaction served to increase the 

retention of bound factors upon agitation of BM and ABM scaffold conditions and even 

enhanced the performance of PBS scaffolds.   The further benefits of also using a cross-

linking approach such as E/N, proved not only to un-affect the collagen structural and 

mechanical integrity but to also slightly enhance the stability of any collagen degradation at 

48 h.49   E/N cross-linking has been widely used in the immobilisation of recombinant growth 
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factors to collagen scaffolds15-17 but here we were also able to demonstrate a stable, 

sustained effect when immobilising media. 

The key finding was we determined an enhancement effect from this scaffold modification 

method.  This was initially observed using BM and became more profound when ABM 

scaffolds were used and then further increased by functionalising with E/N, displaying 

significant differences between the groups tested.   In order to represent the phenotype 

from the attached recipient cells, key gene expression was evaluated.  There was also an 

unaltered endothelial phenotypic response from the attached autologous cells in serum-

free conditions, however there was an enhanced effect in angiogenic genes.  In addition we 

were able to show that the collagen integrity was stable between 24 h and 48 h, as MMP1 

representing collagen degradation was reduced when scaffolds were E/N treated.  Likewise 

the inverse expression of TIMP2 representing collagen integrity was increased when 

scaffolds were E/N treated.  

While the preliminary findings of this study are promising there are important limitations 

and other parameters that exist which should be considered.  An important limitation is in  

the scaffold type used, which dose not have potential as a vascular subsitute, that said there 

is potenital to use this novel conditioning process on other scaffolds types.  Additionally 

there are limitations in the process used to produce the conditioned media which could be 

modified to adjust of the secreted factors produced.  A number of mechanisms could be 

used to achieve this, such as modification to the serum-free culture50 or by exploting 

hypoxic conditions to over produce secreted factors.51  Furthermore the long term activity 

could be invesitgated to access the potential for an off-the-shelf scaffold approach using this 

processing technique. Nevertheless, these studies have shown the potential of a cell 
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secretion method for TE scaffold applications and also provide this method within a serum-

free environment.  

 

5.  CONCLUSIONS 

Here we have demonstrated a scaffold model utilising a novel cell secreted method for 

specifically ECs. Taken together our results and the core principle of this method highlight 

the potential that could be extended to other cell types, tissue environments and suitable 

scaffold materials in tissue engineering and regenerative medicine applications. This 

strengthens the case for its potential as a translatable clinical process for improvement in 

scaffold  preformance. 
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