853 research outputs found

    HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA

    Get PDF
    The microRNA (miRNA)-mediated repression of protein synthesis in mammalian cells is a reversible process. Target mRNAs with regulatory AU-rich elements (AREs) in their 3′-untranslated regions (3′-UTR) can be relieved of miRNA repression under cellular stress in a process involving the embryonic lethal and altered vision family ARE-binding protein HuR. The HuR-mediated derepression occurred even when AREs were positioned at a considerable distance from the miRNA sites raising questions about the mechanism of HuR action. Here, we show that the relief of miRNA-mediated repression involving HuR can be recapitulated in different in vitro systems in the absence of stress, indicating that HuR alone is sufficient to relieve the miRNA repression upon binding to RNA ARE. Using in vitro assays with purified miRISC and recombinant HuR and its mutants, we show that HuR, likely by its property to oligomerize along RNA, leads to the dissociation of miRISC from target RNA even when miRISC and HuR binding sites are positioned at a distance. Further, we demonstrate that HuR association with AREs can also inhibit miRNA-mediated deadenylation of mRNA in the Krebs-2 ascites extract, in a manner likewise depending on the potential of HuR to oligomeriz

    Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing

    Get PDF
    Deregulation of mTOR complex 1 (mTORC1) signalling increases the risk for metabolic diseases, including type 2 diabetes. Here we show that β-cell-specific loss of mTORC1 causes diabetes and β-cell failure due to defects in proliferation, autophagy, apoptosis and insulin secretion by using mice with conditional (βraKO) and inducible (MIP-βraKO(f/f)) raptor deletion. Through genetic reconstitution of mTORC1 downstream targets, we identify mTORC1/S6K pathway as the mechanism by which mTORC1 regulates β-cell apoptosis, size and autophagy, whereas mTORC1/4E-BP2-eIF4E pathway regulates β-cell proliferation. Restoration of both pathways partially recovers β-cell mass and hyperglycaemia. This study also demonstrates a central role of mTORC1 in controlling insulin processing by regulating cap-dependent translation of carboxypeptidase E in a 4EBP2/eIF4E-dependent manner. Rapamycin treatment decreases CPE expression and insulin secretion in mice and human islets. We suggest an important role of mTORC1 in β-cells and identify downstream pathways driving β-cell mass, function and insulin processing

    Regulation of Translation in Haloarchaea: 5′- and 3′-UTRs Are Essential and Have to Functionally Interact In Vivo

    Get PDF
    Recently a first genome-wide analysis of translational regulation using prokaryotic species had been performed which revealed that regulation of translational efficiency plays an important role in haloarchaea. In fact, the fractions of genes under differential growth phase-dependent translational control in the two species Halobacterium salinarum and Haloferax volcanii were as high as in eukaryotes. However, nothing is known about the mechanisms of translational regulation in archaea. Therefore, two genes exhibiting opposing directions of regulation were selected to unravel the importance of untranslated regions (UTRs) for differential translational control in vivo

    A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting

    Get PDF
    One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5′-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5′UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5′UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting

    Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain

    Get PDF
    Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain

    Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic β cells

    Get PDF
    Insulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of β-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying β-cell dysfunction leading to hyperproinsulinemia is poorly understood. Here, we show that disruption of insulin receptor (IR) expression in β cells has a direct impact on the expression of the convertase enzyme carboxypeptidase E (CPE) by inhibition of the eukaryotic translation initiation factor 4 gamma 1 translation initiation complex scaffolding protein that is mediated by the key transcription factors pancreatic and duodenal homeobox 1 and sterol regulatory element-binding protein 1, together leading to poor proinsulin processing. Reexpression of IR or restoring CPE expression each independently reverses the phenotype. Our results reveal the identity of key players that establish a previously unknown link between insulin signaling, translation initiation, and proinsulin processing, and provide previously unidentified mechanistic insight into the development of hyperproinsulinemia in insulin-resistant states

    Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva

    Get PDF
    BackgroundCorticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.MethodsWe investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children's blood cells collected at mid-childhood (n = 239, age: 6.7-10.3 years) additionally adjusting for the children's age at blood drawn.ResultsMaternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate <0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P < 0.05, β = 0.64, SE = 0.30).ConclusionIn our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood

    XBP1, Downstream of Blimp-1, Expands the Secretory Apparatus and Other Organelles, and Increases Protein Synthesis in Plasma Cell Differentiation

    Get PDF
    AbstractThe differentiation of B cells into immunoglobulin-secreting plasma cells is controlled by two transcription factors, Blimp-1 and XBP1. By gene expression profiling, we defined a set of genes whose induction during mouse plasmacytic differentiation is dependent on Blimp-1 and/or XBP1. Blimp-1-deficient B cells failed to upregulate most plasma cell-specific genes, including xbp1. Differentiating xbp1-deficient B cells induced Blimp-1 normally but failed to upregulate genes encoding many secretory pathway components. Conversely, ectopic expression of XBP1 induced a wide spectrum of secretory pathway genes and physically expanded the endoplasmic reticulum. In addition, XBP1 increased cell size, lysosome content, mitochondrial mass and function, ribosome numbers, and total protein synthesis. Thus, XBP1 coordinates diverse changes in cellular structure and function resulting in the characteristic phenotype of professional secretory cells

    Crystal Structure of the RNA Recognition Motif of Yeast Translation Initiation Factor eIF3b Reveals Differences to Human eIF3b

    Get PDF
    BACKGROUND: The multi-subunit eukaryotic initiation factor3 (eIF3) plays a central role in the initiation step of protein synthesis in eukaryotes. One of its large subunits, eIF3b, serves as a scaffold within eIF3 as it interacts with several other subunits. It harbors an RNA Recognition Motif (RRM), which is shown to be a non-canonical RRM in human as it is not capable to interact with oligonucleotides, but rather interacts with eIF3j, a sub-stoichiometric subunit of eIF3. PRINCIPAL FINDING: We have analyzed the high-resolution crystal structure of the eIF3b RRM domain from yeast. It exhibits the same fold as its human ortholog, with similar charge distribution on the surface interacting with the eIF3j in human. Thermodynamic analysis of the interaction between yeast eIF3b-RRM and eIF3j revealed the same range of enthalpy change and dissociation constant as for the human proteins, providing another line of evidence for the same mode of interaction between eIF3b and eIF3j in both organisms. However, analysis of the surface charge distribution of the putative RNA-binding β-sheet suggested that in contrast to its human ortholog, it potentially could bind oligonucleotides. Three-dimensional positioning of the so called "RNP1" motif in this domain is similar to other canonical RRMs, suggesting that this domain might indeed be a canonical RRM, conferring oligonucleotide binding capability to eIF3 in yeast. Interaction studies with yeast total RNA extract confirmed the proposed RNA binding activity of yeast eIF3b-RRM. CONCLUSION: We showed that yeast eIF3b-RRM interacts with eIF3j in a manner similar to its human ortholog. However, it shows similarities in the oligonucleotide binding surface to canonical RRMs and interacts with yeast total RNA. The proposed RNA binding activity of eIF3b-RRM may help eIF3 to either bind to the ribosome or recruit the mRNA to the 43S pre-initiation complex
    • …
    corecore